Section 12.1
Basic Concepts of Virtual Memory

In the old days, memories were small and expensive. The IBM 1130, a minicomputer that IBM introduced in the mid-1960s, had 8 Kilowords, each word 16 bits long, giving it 16K bytes. About 15 years later, in 1981, another popular small, but cheaper, IBM computer, the IBM PC, was introduced with 16K memory. Just 15 years after that, 1996, many students have portable computers weighing 6 lbs and boasting 8 Megabytes of memory. That is 512 times as big as the venerable IBM PC.
However, a strange thing happened on the way to the present -- programs as well as memories got much much bigger. In fact, many people cannot subsist on a mere 8Mb of memory anymore. Windows 95 needs at least 16 meg. Though we can run some of the largest 1981 programs with ease on today's computers, we still need bigger and bigger memories for tomorrow's applications.
Back to the 1950s and 1960s, when memories were tiny--how did people write large, sophisticated programs on them? There must have been ways, since ambitious AI projects were conceived on those tiny machines, along with graphics, weather simulation, nuclear bomb computations, and many other programs.
Let's think back on the two main uses of memory: to hold programs (instructions), and to hold data that is acted on by those programs. Huge datasets were accommodated by those early machines by writing some of the values out to disk files. Whenever the data was needed in a computation, it was read back into memory. The programmer had the responsibility to explicitly read in this data when it was needed. This increased both the complexity of the program and its running time, but still it was possible to crunch large datasets.
Large programs posed a different problem, because the instructions of a program must be in memory before they can be fetched and executed. But like datasets, programs usually break into convenient chunks called subprograms or subroutines, and these could be saved on disk until the moment they were called. Such a technique was called overlaying because these subroutines overlaid old code in memory when they were executed.
Then around 1961, several groups succeeded in making overlay and data management entirely automatic and invisible. Programmers would not be constrained by memory size limitations nor would they have to break up their code into overlays. They could write programs that crunched ridiculously huge data areas and contained vast armies of subroutines and never know they were using a much smaller computing engine, except that it was a little slower. Thus, virtual memory was born.
The essential idea of virtual memory is to pretend there is a very large amount of memory and to use a combination of disk files and real memory to implement it. A program works in a virtual memory space, which seems to it like a very large real memory. Its size is usually constrained only by the size of the MAR which dictates the maximum address that a program can feed to memory. This virtual memory is broken into a number of equal sized chunks, called pages.
By contrast, there is some smaller amount of real memory, called physical memory. It is broken into chunks of the same size as pages, only these chunks of physical memory are called frames.
Pages are copied into frames when they are referenced, a process called demand paging. The operating system and the hardware collaborate to do this copying behind the scenes automatically, without the programmer even knowing it is happening.
As the program runs, it may use up all the physical memory. When this happens, and the program needs yet another page, special steps must be taken. The operating system selects one of the frames to be used for the new page. However, it cannot just overwrite the frame of physical memory if that frame had been changed by the program, or else errors would result. A page that has been modified by memory write operations is called dirty.
So the operating system copies the dirty page out to disk, and then uses that frame for the new page that is being brought in. Actually, if the frame's old contents were not altered, they could just be overwritten, saving a slow disk write. This would happen if the frame contained pure code or data that had not been changed.
All pages that are not currently in frames of physical memory are stored on the hard disk in the swap area, so called because the pages in it are constantly swapped in and out of real memory.
The next section makes all these words come alive through pictures.
 


Section 12.2
Virtual Memory in Action

Fig. 12.2.1 shows a virtual memory of 8 pages, each 1024 bytes and a real memory of 4 frames, each 1024 bytes also. The virtual addresses run from 0 up to 8191 and the real addresses from 0 up to 4095.
[image: https://brahe.canisius.edu/~meyer/253/BOOK/ch12/GIFs/Fig12_2_1.gif]
Fig. 12.2.1: Virtual memory and real memory
Pages (and frames) range from 512 bytes up to 8K, with 1K, 2K and 4K being most common. There are problems when pages are too small or too large so a suitable balance must be struck, often by running a large number of real programs and watching how the patterns of addresses to determine if there is too much swapping.


Fig. 12.2.2 shows the program of Fig. 12.2.1 executing in several stages. The entire program is placed on disk initially. When the OS begins to execute it, one page is loaded into memory, the page containing the beginning of the main() function, called the program's entry point. If page 0 contains the entry point, page 0 would be loaded first. Over time, pages 1, 6 and 4 are referenced, so they are copied into frames. The data in frame 6 is then modified.
[bookmark: #Fig12_2_1][image: https://brahe.canisius.edu/~meyer/253/BOOK/ch12/GIFs/Fig12_2_2.gif]
Fig. 12.2.2: Program beginning to execute.
Suppose page 2 is referenced but all frames are in use, so a victim must be selected. At this stage, the operating system could make a good choice or a stupid choice of victim. The best choice would be to throw out the page that will never be used again or will be used farther in the future than all other pages. A stupid choice would be the page that was modified since that will require both a disk write and a disk read, or a page that will be needed right away. Of course, the operating system doesn't know if a page will be needed again soon, unless it can read the future. Don't laugh! Some systems do precisely that, by running a program, like a payroll program, that is used over and over again, keeping a history of addresses.
Victim selection is an extremely complicated topic and has been researched heavily in order to squeeze the best performance out of virtual memory systems. The most commonly used algorithms are variations on one called LRU for Least Recently Used which keeps a time stamp on each frame. Whenever a frame is referenced, i.e. whenever an address within the page that currently occupies that frame is generated during the instruction cycle, the current time is copied into a register associated with that frame. Then, when a victim is needed, the operating system looks at the time number on each frame and finds the oldest. It is a good bet that this frame, which was used farthest in the past, will not be needed again, so it is selected as the victim. This bet could be wrong, but it is frequently right.
In Fig. 12.2.3 the selected victim is page 0 since it was used farthest in the past and won't likely be needed again soon. It is evicted and the new page, number 2, is copied into its space.
[bookmark: #Fig12_2_2][image: https://brahe.canisius.edu/~meyer/253/BOOK/ch12/GIFs/Fig12_2_3.gif]
Fig. 12.2.3: After evicting page 0
Later, page 0 is needed again, at which point it is copied back in, perhaps into the frame now occupied by page 6. Since page 6 was modified in memory, we say it is dirty. Dirty pages must be copied back out to disk whenever the frame they sit in is given over to a new page, or else the changes will be lost.
[bookmark: #Fig12_2_3][image: https://brahe.canisius.edu/~meyer/253/BOOK/ch12/GIFs/Fig12_2_4.gif]
Fig. 12.2.4: After evicting the dirty page 6
[bookmark: #Fig12_2_4]This process continues until the program finishes.
 


Section 12.3
The working set

As a program runs, it commonly uses only a small percentage of its pages at any given time. This is called its working set. Suppose, for example, that the program shown in Fig. 12.2.1 from only two pages and runs code out of only one page, except for an occasional reference to a section in the other pages. We would say this program had a working set of 3 pages.
If real memory is big enough to hold the working set, then the program will execute smoothly. However, if real memory is too small, then a condition known as thrashing occurs where the program frequently brings in pages from disk, only to use them a little while and throw them out. This is a terrible situation since disk accesses are often 20,000 to 100,000 times slower than main memory accesses!
For example, suppose that only 2 frames of real memory were available, but the working set is 3 pages. Then the program would frequently reference data and instructions out of 3 pages. But at any given point, only two pages would be in memory, since that is all it can hold. When the third page is referenced, it has to be copied in from the swap area and the program can proceed. But then the page that was in the selected victim frame is now gone. Since that page will be referenced again soon, the operating system will have to bring in that page again. It is even worse if the memory is being modified, because the old dirty page must be write back to disk, making the time penalty even worse.
In real operating systems, thrashing can be induced artificially by having a program declare a huge array and randomly access parts of it repeatedly. Real programs can thrash if they are only allotted a few frames in a multiprogramming system. This not only slows down the individual program that is thrashing, but puts a huge burden on the I/O system, thereby slowing everybody down. The end result is that the system slows to the barest crawl. This author used to work on a small VAX 8260 at a large university and when it got very busy, and many users were logged in simultaneously, the slowdown was ridiculous. You could press a key and not see any reaction on your screen for 30 seconds. Hitting return to submit even the simplest command was a kamikaze act since you knew it wouldn't respond for hours! This kind of intolerable situation is the dark side of virtual memory and multiprogramming systems.
 


Section 12.4
The Principle of Locality

If thrashing is a common occurrence, what keeps it from happening all the time? In theory, nothing! However, real programs that do useful work like computing taxes, simulating galaxy collisions, mapping out chromosomes and formatting text exhibit a very useful property: they do not access their memory spaces randomly. There is usually a pattern to how they reference both data memory and instruction memory.
Watching a program in action to count how many times it executes certain statements reveals that programs spend a lot of time in loops, and since most loops are small, programs spin around in a fairly small region of instruction memory. Occasionally, they call subroutines or jump to far-away regions of code. But at any given time, only a small region of instruction memory, or only several small regions, is being used. This is called the principle of locality, because the computer stays in a small, local region. When the region of memory is matched to the working set size, thrashing is unlikely.


The C program in Fig. 12.4.1 computes sin(x) by using a power series. The interior of the loop is executed many times, while the code before and after the loop is executed only once. The interior of the main for loop is called a hot spot.
#include <stdio.h>
#include <stdlib.h>
#define NUMTERMS 1
main() {
     double sum, x, xpower, fact;
     int i, sign, k;
     printf ("Enter angle in radians: ");
     scanf ("%lf", &x);
     sum = x;
     sign = -1;
     k = 3;
     fact = 1;
     xpower = x;
     for (i=1; i<NUMTERMS; i++) {
       +--------------------------------+
       |  xpower *= x * x;              |
       |  fact *= (k-1) * k;            |
       |  sum += sign * xpower / fact;  |
       |  k += 2;                       |
       |  sign = -sign;                 |
       +--------------------------------+
     }
     printf ("sin(%15.8f radians) = %15.8f\n", x, sum);
}
Fig. 12.4.1: C program to compute sin(x); Hot spot is indicated by the outline
[bookmark: #Fig12_4_1]Data memory references similarly follow the principle of locality. Scalars that are used over and over again like loop counters and accumulators, such as sum in Fig. 12.4.1, obviously form regions that are hot spots. Also, large programs often manipulate data in one or two-dimensional arrays, and programs frequently move about in fairly small regions of these arrays before moving on to a different region. The principle of locality can thus be seen in action in both data memory and instruction memory.
 


Section 12.5
Address spaces and page tables

A program that uses virtual memory generates virtual addresses as it executes instructions. The addresses that the program generates go from 0 up to the maximum address and form a set of numbers called the program's address space. Since these addresses are not real, we sometimes call this the program's virtual address space.
Usually, the number of bits in addresses determines the size of the address space. For example the VAX uses 32-bit addresses although one of these bits was used to tell if the address was a special system address or just an ordinary user address. Thus, VAX addresses are actually 31 bits long. 231-1 is 2,147,483,647, which is the largest address that a program running on the VAX can generate in an instruction. The reason why we subtract 1 is because 0 is the first address and all 1's is the last address, and
111111111111111111111111111111
(31 ones) is 2,147,483,647, computed by 231-1.
In the old days, an architecture may have had the capacity for a large address space but the particular model that a user bought might have less memory. For example, on the early CDCs, which did not use virtual memory, addresses were 18 bits long, giving a total address space of 262,144 words. However, many smaller models were sold that had fewer words of memory, sometimes only half of this: 131,072 words. Programs written for those smaller models had to take this into account and not have extremely large arrays, for example. If a program ran that tried to access a non-existent memory word, a run-time error would be generated by the hardware and the program would be killed with a nastygram from the OS.
When a computer has virtual memory, the program can generate any address and it is the job of the hardware to translate that virtual address to a physical one. Even when the page containing the virtual address is not currently in a frame, virtual address can be translated into a real address. How does the hardware do this, detect errors, and cause disk reads to bring the page into memory? It does it with the help of that master utility program, the operating system, and a special data structure.
The heart of the translation process is a data structure called the page table. This is a one-dimensional array of items which enables the hardware to quickly look up a virtual address and find its equivalent physical address, or detect that there is no such physical address.
Fig. 12.5.1 shows a page table for the system described above. Since there are 8 pages in the program's address space, there are 8 entries in the page table.
[image: https://brahe.canisius.edu/~meyer/253/BOOK/ch12/GIFs/Fig12_5_1.gif]
Fig. 12.5.1: Page table for computer of Fig. 12.2.2
[bookmark: #Fig12_5_1]There are different implementations of page tables, but they usually contain the following:
1. A present/absent bit which is 1 if this page is currently loaded in a frame
2. A dirty bit which tells if this page differs from its disk copy
3. The physical frame number if this page is currently in a frame
4. The disk address of this page, telling where to find the permanent copy
5. A timestamp, telling the last time this page was accessed.
If the page is not currently in physical memory, then the dirty bit is ignored and the physical frame number is invalid. Only the disk address matters. If the page is in a frame of physical memory, then all the fields are valid.
When the program references memory in a page that is in a frame, which it can tell by examining the present/absent bit, it copies out the physical frame number and inserts that into the MAR of the memory hardware. For a write operation, the dirty bit is set so that when this page is evicted from this frame, the contents will be saved back to the swap area of the disk instead of thrown aware. Reads do not change the dirty bit. A page's dirty bit is initialized to 0 when it is loaded into a frame.
If the page is not currently in a frame, then the operating system is called into action. The job is usually suspended until the OS can schedule a convenient time to copy the page. This event is called a page fault, although the program is not really at fault!
When the OS finally gets back to the suspended job, it first looks to see if there is a vacant frame. If there is, it finds the page on disk by looking up its disk address. Then it reads the entire page from the disk by starting up special hardware to transfer in a large block of memory without constant supervision of the main CPU. While this is going on the OS continues working on some other job and only returns to the job when the block transfer is done. Then it updates the page table by inserting the frame number into the entry, setting the dirty bit to 0 and the present/absent bit to 1. Finally, the operating system marks the job as ready to run and when all other higher priority jobs have received their fair time slices, the OS turns control back to this job. Page faults are serious occurrences and should be minimized.
Disk addresses can be quite long. Typically, they include the disk drive number, the platter or surface in that disk drive, the track and finally the sector number. It is not uncommon for disk addresses to be 40 bytes long. In fact, they are usually so big that it is impractical to keep all of them in memory in the page table, so they are usually stored in another table on disk and only read in when needed. In this case, the page table in memory would only need the frame number, the dirty bit and the present/absent bit.
One way of avoiding saving long disk addresses in the page table is to calculate the disk address during a page fault. This can be done if the pages are stored on disk in a contiguous swap area, which is very common. In this case, all that is needed is the starting disk address which the operating system can store in just one place.
 


Section 12.6
Dynamic Address Translation

Let's examine in greater detail how virtual addresses are split up into component pieces and translated. Suppose that a machine has 24 bits in its virtual addresses, which implies that it's virtual address space is 224 words long, or 16,777,216 words. Further suppose that pages are 1K long. Remember that 1K = 1024. This means there will be 16,777,216 ÷ 1024 = 16384 pages in a program at maximum. Since 10 bits are required to count from 0 up to 1023, 10 bits out of the 24 would be the offset within the page and 14 bits of the 24 would be the page number. Fig. 12.6.1 shows this split of the 24 bits of a virtual address.
[image: https://brahe.canisius.edu/~meyer/253/BOOK/ch12/GIFs/Fig12_6_1.gif]
Fig. 12.6.1: Split-up of the bits of a virtual address
The offset within the page is the same as the offset within the frame, since pages and frames are the same size. The page number is what must be translated into a frame number, which can only be done by looking up the page number in the page table, finding what is there and inserting that into the upper part of the MAR.


Fig. 12.6.2 illustrates this process using 24 bit virtual addresses and 1K pages (and frames) on a machine with only 1/2 Megabyte (524,288 bytes) of real memory. Dividing 524,288 by the page size (1024) gives us 512, which is the number of frames. Thus, the 16,384 pages of a program, its total virtual memory, must be somehow placed into 512 frames of real memory, and this of course is assuming that one program gets all of real memory, a very unrealistic assumption. Since there is only half a megabyte of real memory, the MAR would only be 19 bits long.
[bookmark: #Fig12_6_1][image: https://brahe.canisius.edu/~meyer/253/BOOK/ch12/GIFs/Fig12_6_2.gif]
Fig. 12.6.2: Dynamic address translation
[bookmark: #Fig12_6_2]Computers that use virtual memory do not implement virtual memory in software, which would be unbearably slow. Instead, they put extra gates and circuits on the chip to do the dynamic address translation. In some older units, the circuitry to do this was put on a separate chip called the MMU, or Memory Management Unit. Nowadays, it is more common to bundle the MMU in with the ALU and registers on the main processing chip.
A more interesting question is where the page table resides. As we shall see in the next section, there are ways of making dynamic address translation go faster on average. But it still helps if the page table lookup is very fast.
Some systems store the page table in main memory. This works but is slow. It also detracts from memory that programs might use for useful work. If the system has a separate MMU chip, the page table or tables (if there is more than one program running at the same time) may be stored in high speed memory on that chip. When the MMU is just a part of the main processing chip, as is common nowadays, the page tables might be kept in very high speed RAM on the chip. Such RAM is called a cache (pronounced "cash") because its existence is kept secret, or hidden, from the general programmer. The French word for "to hide" is cacher (pronounced "cash-AY"). We will study more about cache memories later, since they are used in other ways. The main drawback is that when the page table gets to be very big, it is no longer practical to keep it in these special high speed and expensive memory. So we are again forced to resort to main memory.
 


Section 12.7
Speeding up Virtual Memory

Obviously a page fault involves a heck of a lot of work on the part of the operating system and a very long wait for the user program before it gets to resume. But because of the principle of locality, page faults are relatively rare. If a program is well-behaved and stays within a small region of memory during each phase of its life, page faults will only occur when it changes phase. For example, the initial phase might involve reading and preprocessing an input data file. Then the program goes into the next phase, a more computationally intensive one. If it suffers a page fault here, the program will be slowed down, but since it doesn't have to go back to the previous stage again, no extra page faults will occur. Thus, for well-behaved programs (and most are) the overhead of virtual memory is bearable.
However, there is another more subtle slowdown involved, and that is looking up the page number in the page table during every access to memory. This involves a memory access in itself, in addition to the eventual, desired memory access. Thus, we would expect computers that used virtual memory to run at half the speed of their non-virtual cousins.
Again, the principle of locality saves the day. Since most memory references will be within a small number of pages, say 10, then a tiny cache of memory that is almost as fast as the general purpose registers can be maintained. In that cache the part of the page table that is getting used repeatedly can be stored. If 90% of all requests to translate addresses are within those pages whose translations are pre-computed and stored in this cache, the machine will only be slightly slower than a computer without virtual memory. This tiny cache is called a TLB, or Translation Lookaside Buffer.
The way a TLB works is that those entries from the page table that were most recently referenced are copied into the TLB. Whenever the MMU makes an address translation, it first looks in the TLB. If the page number is there, meaning that it has been translated recently, the MMU pulls the frame number out of the TLB quickly and inserts it into the upper part of the MAR. If the page number is not there, however, the MMU must go out to the page table that is kept in main memory and find it. The MMU copies that entry into the TLB, hoping that addresses out of that same page will need to be translated again soon.
In a way, the TLB acts like real memory while the main memory acts like virtual memory! The TLB is tiny while the main memory is huge, so the spill-over is kept in main memory. In the larger sense, real memory is where we store stuff that we are only working on right now, while disk is the much more gigantic memory where we keep all the items we ever will need.
The speed of access differs among these various systems, along with their size of storage, so that very fast memories tend to be very small, and very large memories (such as disk drives) tend to be very slow, able to hold billions of bytes of information.
A good analogy is an office. There is usually a desk to work at, to spread out one's papers while working. One or more filing cabinets are nearby where a vaster amount of papers is stored. If one needs a paper that is not on the desktop, he or she goes to the filing cabinet, finds it and puts it onto the desktop. Of course, she or he had better put some papers back into the filing cabinet sooner or later, or the desk will begin to look like a mountain range.
Fig. 12.7.1 shows the TLB inserted into circuitry that does dynamic address translation.
[image: https://brahe.canisius.edu/~meyer/253/BOOK/ch12/GIFs/Fig12_7_1.gif]
Fig. 12.7.1: TLB speeds up dynamic address translation;
The TLB is consulted for each virtual address translation. If the page number
is found there, a lookup in main memory's page table is aborted,
symbolized by the X on the line coming from the page table.
The TLB should be extremely fast, faster than main memory and as fast as registers. To achieve the necessary speeds, TLBs are associative memories, which means that items are looked up by their content rather than their address. We humans are very good at associative memory since this seems to be how our minds work. For example, you might vainly be trying to remember the name of the famous actress who starred as the evil sister in the movie "Whatever Happened to Baby Jane?" You try all day to remember it but can't. All of a sudden, you get a call from your friend Betty and it pops into your head that the evil sister was played by Bette Davis. The rest of the name, Davis, is associated with "Bette" so that when you hear part of her name, your mind automatically fills in the rest. (Bette Davis deliberately spelled her name "Bette" rather than "Bettie" or "Betty.")
In the computer, associative memory is a set of flip flops along with extra circuitry that enables each word to be compared at the same time. Instead of an MAR, an associative memory has only an MBR and a mask register. When the read signal is given, the associative memory compares the MBR to every word in the memory all at once. If the contents of the MBR is found, a signal is emitted saying so.
Usually, only part of the MBR is compared, which is the purpose of the mask register. If the part of the MBR corresponding to 1's in the mask register is found anywhere in the memory, the entire word is copied into the MBR. To write to the associative memory, a value is put into the MBR and a write signal is given. The associative memory selects a word of its memory at random and copies the contents of the MBR into it.
The next two figures illustrates the reading process for an associative memory. First, the mask and MBR registers are loaded. The mask tells which bits of the MBR must match with some word in memory. Whereever there is a 1 in the mask, the corresponding bit of the MBR must match a word in memory. If there is a 0, no match is done. Thus, the mask tells which part of the MBR is the "key" and which part is the "value". Fig. 12.7.2 shows this.
[bookmark: #Fig12_7_1][image: https://brahe.canisius.edu/~meyer/253/BOOK/ch12/GIFs/Fig12_7_2.gif]
Fig. 12.7.2: Setup for associative memory search for 11011100


Fig. 12.7.3 shows that the fourth word of memory matched so the word is copied into the MBR.
[bookmark: #Fig12_7_2][image: https://brahe.canisius.edu/~meyer/253/BOOK/ch12/GIFs/Fig12_7_3.gif]
Fig. 12.7.3: Getting the result
[bookmark: #Fig12_7_3]What this figure does not show is that if 11011100 was not found in any word, a failure bit would be set so the computer would not erroneously interpret what is left in the MBR as the searched-for contents.
Associative memories are great for finding things quickly because the gates are set up to compare every word with the MBR all at once and to tell if the value is found. The alternative is to sequentially compare every word in the memory, which would take time.
In the context of virtual memory, the page number is what is being searched for in the TLB and the corresponding frame number is what is found and returned if that page number is there.
There is always a cost, some sort of trade-off or dark side, and for associative memories the cost lies in the complexity of the gates and circuits. Associative memories are larger and more complex than regular memories so TLBs in real computers tend to be tiny, usually 8 or 16 words. Studies have shown that such small TLBs are effective, nevertheless. Approximately 90% of the addresses translated can be done by getting values out of the TLB instead of out of the page table. This percentage is often called the hit ratio, and a positive match of an item with a value in the TLB is called a hit.
 


Section 12.8
Fragmentation

A hole is defined as a chunk of memory not in current use. Holes develop as jobs are loaded, run and then finish. Reclaimed memory from dead jobs often gives rise to many small holes. Operating systems try to merge adjacent holes in order to find the largest chunk of available memory possible for new jobs. By the way, memory itself doesn't look any different between holes and jobs. This is only a fiction in the "mind" of the operating system, which keeps track of which regions of memory belong to its jobs.
When there are many holes and not enough memory in any one place to load a new job that wants to come in, we say that memory is fragmented, as if the chunk of available memory is broken into small, unusable pieces. Some systems perform compaction, which is copying jobs around so that all the active jobs are put at one end of the memory and all the holes coalesce at the other end, making one big hole that is usable.
Jobs request a certain amount of memory when they start, leaving enough room for the heap and run-time stack to grow. Commonly, a job doesn't use all the of the memory it requests and we say that memory suffers internal fragmentation, internal because these unused regions are inside programs. The earlier kind of fragmentation is called external fragmentation because it is outside the jobs.


Fig. 12.8.1 illustrates these two types:
[image: https://brahe.canisius.edu/~meyer/253/BOOK/ch12/GIFs/Fig12_8_1.gif]
Fig. 12.8.1: A simpler computer system with non-virtual memory
internal fragmentation is memory claimed by jobs but not yet used by them;
external fragmentation is unused memory outside jobs.
[bookmark: #Fig12_8_1]Another kind of fragmentation still occurs, which is when a program's memory request is not an even multiple of the frame size. Memory can only be allocated in frames and all frames must be the same size, due to the number of bits in the dynamic address translation hardware. 4096 bytes is a common page size. If a program requests 17.5 frames, it must get 18, even though the last frame is only half used. Many computer scientists call this a form of internal fragmentation because entire frames belong to jobs, even though the job didn't request the memory so it is logically "outside" the job.
 


Section 12.9
Trade-offs

Let's discuss some of the trade-offs that virtual memory systems entail. First, let us look at page size.
Remember that in most systems, pages and frames are the same size, often 512 bytes up to 8192 bytes, and always a power of 2. The size of the page is perhaps the most critical factor in the design and tuning of a virtual memory system. If it is too small, the page tables will be too large and the associative memory will have to be larger to achieve the same hit ratio. If the page size is too large, internal fragmentation becomes unacceptably high and each page fault causes many more bytes to be transferred between disk and memory.
Let's go through a calculation. Suppose that addresses are 24 bits wide, meaning there are 16 megabytes of virtual memory. If pages were 8K (8192 bytes), then 2048 pages would exist in a program's page table since 16M ÷ 8K = 2048. 13 bits are required to address 2048 words. Also suppose there are only 2 megabytes of real memory. 2097152 (2M) divided by 8192 gives 256, which is the actual number of frames. Thus, a 13 bit page number must be mapped into a 8 bit frame number.
Assuming two additional bits are needed in the page table for each entry (present/absent and dirty bits), each page table entry, without disk addresses, needs 2+8=10 bits. Since it is difficult to allocate part of a byte, this would have to be rounded up to 16 bits per entry, or 2 bytes. Thus the page table would be 2048*2=4096 bytes long, which is 4K. This is how much each individual process or program would need just for its page table.
But there is usually more than one program running at any given time, so the total amount of memory devoted to page tables is 4K times the number of jobs that can be allowed at any given time. Supposing there can be 50 jobs, then 200K would have to be set aside for page tables. This is only the "skinny" version, too, without disk addresses, so more than 200K would have to be set aside on the disk drive. Adding 40 bytes for a disk address to 2 bytes per page table entry, we get 42 bytes times 2048, or 86,016 which is 84K for one job's complete page table. Fifty jobs, each getting 84K, would eat up an astonishing 4.2 megabytes for page tables, which is twice as much memory as we assumed the entire computer had! Further, these assumptions of 8K pages are large. More typically, pages are 4096 bytes, which would double all the numbers.
Most jobs are not allowed to use all of their address space, or allowed to store on disk in the swap area a page for each byte of their virtual address space. For a 32-bit machine, this would require about 4 billion bytes per job. (This is 4 gigabytes.) The more typical situation is to assign a small amount of memory to each job, such as 8 megabytes, and if it grows into unused regions of its stack or heap, additional pages are allocated, up to a limit determined by the system administrator.
Another factor in determining the size of pages is the size of the working set and typical loops inside programs. If a loop stays within one page then all of its addresses will be within that page, causing the program not to page fault since every dynamic address translation will find the page number in the TLB. If the page size is too small, however, the program will frequently go outside the page containing the loop code, possibly causing page faults. Of course, this could happen even if the typical loop is the same size as the page but the loop spanned a page break. In this case, both pages would soon find themselves resident in frames and would continue to sit there until the loop was finished.
The solution to these woes is to increase the number of frames that a job is allowed to have at any given time. Yet if the page size is too large, we must run fewer programs at any one time or increase the size of the total memory.

It is worthwhile to see if virtual memory solves or exacerbates the protection problems mentioned in the last chapter. Recall that we do not want malicious or errant programs writing into any region of memory that does not belong to them, and the OS must handcuff any that do. Some systems like the CDC use a separate field length register to compare the address against the allowed range of addresses for the currently running program. Other machines, such as the IBM mainframes, use a short key for each block of memory and compare it against the currently running program's key for equality.
Surprisingly, virtual memory systems do not need any extra protection mechanisms because a program does not even "know" about addresses that are not currently mapped into its virtual address space. The only way a program can get at real memory location X is if X is in one of the frames currently allocated to the program via the page table. And since frames are allocated to jobs on an all or nothing basis, with no jobs sharing memory inside a single frame, it is impossible for one program to mess up another's memory.

There are many other issues involved in the design of virtual memory systems and a huge amount of effort has been expended to get them to work efficiently. We have only touched on the major points.
However, virtual memory has been enormously successful and today is considered as essential as the adder or the disk drive! Even personal computers use virtual memory, even when they are not truly multiprogrammed. Since personal computers seem to lag behind mainframes by about 20 years, anything that appeared in the mainframes of the past should be showing up on the shelves of your local computer store any day now.
 
[bookmark: _GoBack]

Section 12.10
Segmented Virtual Memory

Quite frankly, virtual memory as we have presented it earlier in this chapter is not easy to use. Operating systems, compilers and other programs need to "chunkify" memory in order to assign different protections, names and other properties to it. If virtual memory is just one huge chunk, this "chunkification" must be done by the program and is very hard to get right.
All modern computers break their virtual memory space into chunks called segments. Each segment represents one conceptual piece of memory. For example, a compiler assigns the heap to one segment, the run-time stack to another, the code to yet another and so forth. Each segment can have its own protection scheme so that the code can be readable, but not writable, while the stack and heap are both readable and writeable. Some segments may be write-only, such as a mailbox into which a program could write a message, but not read existing messages.
The way segments are merged with virtual memory is to treat each segment as its own little paged virtual memory, complete with its own page table. Segments are identified by number, starting with 0. Pages within segments are identified by number, too, but the concatenation of segment number + page number is unique.


A new table, the segment table, must exist in order to tell the computer where the page tables are to be found. Fig. 12.10.1 illustrates this:
[image: https://brahe.canisius.edu/~meyer/253/BOOK/ch12/GIFs/Fig12_10_1.gif]
Fig. 12.10.1: Segmented Virtual memory
There is one Segment Table Base Register (STBR) for the entire machine. It points to the segment table (which may be in ordinary RAM or some special high-speed RAM or register set.) To get to the right page table, the segment number is taken out of the virtual address. In Fig. 12.10.1, this is the top 9 bits of the virtual address. This number is added to the address in STBR to give the address of the right pointer in the segment table. This pointer points to the page table for that segment.
The various page tables may be in main memory, or in special high-speed RAM, or in special registers. However, a page table is much larger than the segment table, and there are many page tables. If 9 bits are devoted to the segment number, then there may be up to 29 segments, or 512 of them! If there are 11 bits in the page number, there may be 211, or 2048, pages for each segment. A given program may not need more than a few segments, however, so not that much memory may be needed for these tables. However, they may consume vast quantities of memory in the worst case.
Once the correct page table is found, the page table entry is consulted and the usual mechanism of examining the present/absent bit, the dirty bit and other data is invoked. If the page is not in RAM, a page fault occurs. If the page table is full, a victim must be found.
Speed is obviously sacrificed by having a two-layer virtual memory such as this. Some chips even have more than 2 levels! But the principle of locality saves the day, along with a translation lookaside buffer to remember the most recently translated addresses. See section 12.7 for details. In a segmented paged virtual memory, such as the one in Fig. 12.10.1, the combination of segment number/page number is used as the search key, with the actual frame number of RAM being the result. Then the offset within the page is tacked onto the end.


In Fig. 12.10.2, the TLB is inserted, showing how it speeds up this complex virtual memory system by bypassing the multi-step translation process if the virtual address has been translated recently.
The MMU is shown in gray. It comprises the entire virtual address translation system, except that page tables are often so large that they must be stored in RAM itself. This is why they are surrounded in yellow. However, some older systems cache the page tables in special high speed memory or registers.
[bookmark: #Fig12_10_1][image: https://brahe.canisius.edu/~meyer/253/BOOK/ch12/GIFs/Fig12_10_2.gif]
Fig. 12.10.2: Segmented Virtual memory with TLB
[bookmark: #Fig12_10_2] 
26

image4.gif

image5.gif

image6.gif

image7.gif

image8.gif

image9.gif

image10.gif

image11.gif

image12.gif

image13.gif

image1.gif

image2.gif

image3.gif

