Section 14.1
Henry Ford had a great idea

Many great ideas are stolen. Well, actually stolen is too strong a word. The words borrowed, adapted, or reformulated, convey the sense that great ideas tend to migrate from one place to another, often with substantial modification and improvement. The idea of the pipeline is one of those ideas.
Almost 100 years ago, Henry Ford rethought the assembly process of building cars. Instead of having the workers walk around the shop, going from car to car to do each little task, why not have the car go to the worker? If partially assembled automobiles could be put on big conveyor belts and paraded in front of an army of workers, each of whom did only one small task, cars could be built faster. That idea is still used today, although now automobiles are assembled largely by robots.
Computer scientists, always eager to speed up computers without abandoning the cherished and effective von Neumann model of computing, saw several places where assembly lines could be used inside computers. Instead of assembling physical parts, the "workers," which are actually logic circuits, work on values, flipping bits here and swapping bits there. The main intellectual problem was to look for places where an operation could be decomposed into relatively independent stages, one for each "worker."
Before we delve into actual computer pipelines, let's take a look at another pipeline which is a little closer to home than an automobile assembly line, namely washing dishes. Imagine that you have a big pile of dishes to wash. "Good grief, this will take a long time!" you sigh as you look at the mountain and think of all the things that will have to be done to each one. First, get the next dish or plate or piece of silverware and scrape off any excess food into the garbage bucket. Then insert it into the hot, soapy water and rub it with a sponge. Take it out and inspect it. If not done, then repeat this stage. Next, move the dish to the hot clear rinsewater and swish it around. Next put the dish in the strainer or dry it by hand using a towel. Finally put it back into the cupboard. This is exhausting just to describe!
However, "many hands make light work," as the old proverb goes. If you have helpers you could station them in a line. The first helper could scrape the dishes and hand them to you for the actual washing. Then you could pass the clean but soapy dish to the rinser, who would either put it in the strainer or hand it to the dryer. All the while you could talk and enjoy company. Fig. 14.1.1 shows the dish washing pipeline.
[image: https://brahe.canisius.edu/~meyer/253/BOOK/ch14/GIFs/Fig14_1_1.gif]
Fig. 14.1.1: A dishwashing pipeline
[bookmark: #Fig14_1_1]If you calculate the time you spent washing, rinsing and drying each dish individually, then compare that the amount of time you spend just on your washing stage, you will find tremendous savings. This is an example of parallel processing, because you and your friends are all working in parallel, at the same time, on different but interlocking tasks.
There are several aspects of the dishwashing pipeline that are very similar to computer pipelines. First, the task can be broken into many well-defined steps or stages. The more stages, the better because you can get more people working on it and the amount of time each person spends on a plate goes down. Second, the stages are about the same size, i.e. take about the same amount of time. If one stage took a very long amount of time compared to another, then the pipeline would not move faster than the slowest stage because that would hold everybody else up. Third, the dish, moving from person to person, is similar to a data item and the buckets through which it passes are like the functional units which calculate part of the answer.
Pipelines only speed up work on the average, and the more work there is to do the more time is saved overall. If you had to wash only 2 dishes, it would hardly be worth your time to set up a 5-stage pipeline since the workers would be idle most of the time. However, if there are 1000 dishes to do, the telescoping of work results in significant savings. We will calculate this speed up later.
Continuing with the dishwashing analogy let us introduce some terminology. When the first dish comes through, it must pass through all 5 stages. As the first stage is working on it, the other 4 people are idle since they are waiting for that dish to come along. This section of time, when some of the stages are idle, is called filling the pipeline. Once the pipeline is filled, a completed unit of work rolls out the end of the pipeline (well, plates, like cars, do roll!) every time period, assuming that all workers in the pipeline take the same amount of time to do their work. When the final dish passes through, it will leave the scraper and go to the washer, leaving the scraper idle. When the washer passes it along to the rinser, both the washer and the scraper are idle. This continues until the last dish exits the pipeline and all workers are idle. This finishing stage is called draining the pipeline.

Section 14.2
Computer Pipelines

There are two main uses for pipelines in computers:
· the instruction fetch/decode/execute cycle
· certain kinds of arithmetic, especially floating point arithmetic
First we will discuss the fetch/decode/execute cycle. Recall the phases of executing a single instruction:
1. Instruction fetch
2. Instruction decode
3. Operand fetch
4. Instruction execution
5. Result storeback
These phases are somewhat independent. For example, the decoder is a big combinational circuit that can be analyzing the contents of the IR while the memory is fetching the next instruction, and the execution circuits, such as the adder and the shifter, can be doing their work while the next instruction's operands are being fetched.
There are conflicts, especially when memory is used. Three stages access memory: 1, 3 and 5. The first two only read memory but the third, instruction storeback, may write memory. If the memory is multi-ported, which means that more than one pending request can be given to it because it is comprised of several physically independent submemories, then it may be possible to avoid some conflicts.
Two things are done to avoid these conflicts. First, instructions can be cached on the processor chip in a set of registers called the instruction queue. Second, operands and results are often stored in registers thereby obviating the need for extra memory accesses.

Fig. 14.2.1 shows a sequence of instructions flowing through a 5-stage instruction pipeline.
[image: https://brahe.canisius.edu/~meyer/253/BOOK/ch14/GIFs/Fig14_2_1.gif]
Fig. 14.2.1: Instructions in a 5-stage pipeline
[bookmark: #Fig14_2_1]

Section 14.3
Jump Penalties

Every once in a while one of the instructions in a program will be a jump. There are two main kinds of jumps: conditional and unconditional. Further analysis shows that some unconditional jumps are operate differently. Here is a complete breakdown:
Conditional jumps:
	JZ xxx
	If the Z bit is set, go to location xxx and start doing instructions there. (All other simple conditional jumps are like JZ: JNZ, JC, JV, etc.)

	SOBGTR
	Subtract one, branch greater than 0. This is a VAX instruction, described in more detail below, that represents a counting conditional instruction used to implement counting loops.

Unconditional jumps:
	JMP xxx
	Go to location xxx and start doing instructions there

	CAL xxx
	Call the subroutine at xxx, just like a JMP, but save state so a return can happen later

	RET
	Return from the current subroutine; take the new address from a special register; just like a JMP

	TRP nnn
	Call the operating system (trap), like a CAL except that a system number is given instead of an address. This causes a protected jump into operating system code.

	REI
	Return from exception, interrupt or trap, like a RET except that the operating system reloads context and switches to user mode.

Unconditional jumps, like JMP, CAL and RET, have the advantage that it is already known from the code where the next instruction will be, whereas conditional jumps like JZ leave us in the dark for a while, until the appropriate condition bit is set.
All jump instructions alter the PC register. Remember the PC (program counter) always contains the address of the next instruction to execute. It is usually bumped up by 1 during ordinary instructions, but jumps actually rewrite it, which is how they effect a change of instruction streams. Jump instructions do not have a storeback stage in that they do not write something into memory, but to keep our diagrams simple, we shall assume that the alteration of the PC register does happen during the final stage.
Fig. 14.3.1 shows the following CSC-1 style code moving through a 5-stage pipeline:
Address Opcode Operand

 4753 ADD 9301
 4754 MPY 9302
 4755 SUB 8769
 4756 JZ 5100
 4757 ADD 7633
 4758 NEG 7890
 4759 SUB 9303
 4760 MPY 9989
 ...
 5100 DIV 7999
 5101 MPY 8392
 5102 SUB 8661
 ...
[image: https://brahe.canisius.edu/~meyer/253/BOOK/ch14/GIFs/Fig14_3_1.gif]
Fig. 14.3.1: Short program moving through a pipeline

The pipeline "movie" of Fig. 14.3.1 shows that 4757 is done after 4756, so apparently the Z bit was not set, because the accumulator did not have 0 in it. Thus, the orderly sequential flow of instructions is not interrupted. But what if the accumulator does have 0 when 4756 executes? Fig. 14.3.2 shows this case:
[bookmark: #Fig14_3_1][image: https://brahe.canisius.edu/~meyer/253/BOOK/ch14/GIFs/Fig14_3_2.gif]
Fig. 14.3.2: JZ executes and branches
[bookmark: #Fig14_3_2]There is a hole at time slice 9 when JZ actually executes and rewrites the program counter because the instructions behind JZ in the pipeline, namely 4757, 4758, 4759 are all invalid. This is called squashing or killing the pipeline. When JZ executes and an examination of the accumulator determines that 5100 must be the next instruction executed, the pipeline has to be completely refilled again, causing a gap during which no real work is appearing in the final stage. This is called a jump penalty.

Section 14.4
Ways to avoid jump penalties

How serious are jump penalties? Quite serious, actually, since jumps are very common. Thus, instruction pipelines seldom run at their full speed. But there are a number of tricks that computer scientists have devised to minimize the jump penalty.
One trick is based on the fact unconditional jumps do not have to wait until the execution stage to change the pipeline's direction. As soon as the decoder has finished (after stage 2 completes), the hardware "knows" this is an unconditional branch and can begin fetching from the new place one stage earlier. This still leaves a little gap, but usually only one time slot.
The real culprits are conditional jumps. Another trick to taking away the sting of these instructions is to have two pipelines going at the same time. As long as sequential code is executing, only one pipeline is used. But as soon as a conditional jump is decoded, the second pipeline starts to fill up with instructions at the new address. When it is finally determined which path the code takes, one of the pipelines can be killed off. However, this is not a strong remedy because either of the two alternative instruction streams may fork off again if another jump is encountered before the first one "takes."

Yet another method of bypassing the damage of conditional jump instructions is to include another piece of hardware, a tiny associative memory called a Branch Target Buffer or BTB. Whenever a jump "takes," the jump instruction is looked up in the associative memory to see if it was done in the recent past. If it was, then we know what the following instructions are so we can reload the pipeline instantly with those instructions that we saved from that occurrence. This is shown in Fig. 14.4.1.
[image: https://brahe.canisius.edu/~meyer/253/BOOK/ch14/GIFs/Fig14_4_1.gif]
Fig. 14.4.1: Use of a BTB to immediately load the pipeline with the target of JZ
As soon as JZ "takes" in time unit 8, the BTB is consulted and the hardware finds the location 4756, the address of that JZ instruction. The last time it executed, that JZ branched to 5100. The 5 instructions that were fetched and decoded and executed there were saved in the BTB, and are now copied into the pipeline so the pipeline doesn't have to skip a beat.
A BTB seems like a great idea, saving time at the expense of extra hardware. However, there are many serious drawbacks such as what happens if those instructions need to do various things to registers during operand fetching. For example, in CISC computers, operand fetching may involve alteration of registers, especially the stack pointer. But undoing the effect of changing the stack pointer once it has happened, or buffering up future changes to the stack pointer, is very difficult to get right.
Dependencies between the stages of the fetch/decode/execute cycle in a CISC computer make it difficult to pipeline such machines, so RISC machines are inherently easier to pipeline. Furthermore, RISC machines do not break the instruction cycle into many stages, usually only 2 or 3, also reducing the complexity of the pipelining.
Another clever solution to avoid the pipeline slowdowns induced by jumps is to use special loop instructions that allow the computer to "guess" where a branch will be taken. The VAX has an instruction called SOBGTR, which stands for Subtract One and Branch if Greater (Than Zero). The first operand is a register and the second is a memory address. SOBGTR was placed at the bottom of a loop and implements a counting loop, like a for loop in C. Fig. 14.4.2 shows a typical placement.
 MOVL #100,R5 ; Set up the loop counter, put 100 into R5
TOP: ; Do the work of the loop
 ; body...
 SOBGTR R5,TOP ; Sub 1 from the counter
 ; Branch to top if >0
[bookmark: #Fig14_4_1]Fig. 14.4.2: SOBGTR at the bottom of a counting loop
[bookmark: #Fig14_4_2]In most counting loops the body of the loop is executed many times, which means that the loop instruction, SOBGTR in this case, at the bottom of the loop, will branch back to the top most of time. If the loop body is done 100 times, for example, the SOBGTR will branch back to the top 99 times. On the 100th execution, it branches to the next instruction because the counter has gone down to 0.
In order to keep the pipeline full, the hardware looks for certain kind of jump instructions, such as SOBGTR. When the computer determines that the instruction being decoded is SOBGTR, it fetches future instructions from the target of the SOBGTR, which is the destination address, the address of the top of the loop, not the next instruction physically following the SOBGTR.
The computer loads instructions from the top of the loop instead of the next instruction in the program after SOBGTR because it expects that the SOBGTR will succeed and will branch back to the top of the loop. Only when the loop finishes, and the counter goes to 0, SOBGTR will fall through to the next instruction instead of branching back to the top of the loop. This will cause the pipeline to be squashed, inducing a jump penalty, but since it happens only a miniscule percentage of the time, it will not slow down the computer very much.
For example, if the loop body executes 100 times, and there are no branches inside the loop, then the pipeline can read instructions and buffer them up for execution without any branch penalty until the very end. It will be as if the loop had been unrolled into 100 instances of purely sequential code.
This kind of guessing is called branch prediction. Other computers have more instructions like SOBGTR which are used by the hardware to guess correctly where the branch will go to.
One bad thing about the SOBGTR instruction is that the loop body will always be performed at least once. This does not match the semantics of the "for" loop of C where the loop body may be done no times if the condition is false to begin with:
for (i=0; i<numtimes; i++) {
 /* loop body */
}
In the for loop above, numtimes may be 0 or negative in which case the loop body will not be done at all. The code into which this for loop translates would have to have a test at the top, not at the body, in order to correctly implement the C code. It would be possible to have one test before the loop code is entered at all, and to use a SOBGTR instruction at the bottom of the loop.

Section 14.5
Arithmetic Pipelines

Besides instruction pipelines, operation pipelines frequently speed up a computer. Floating point arithmetic benefit from operation pipelines, and in this section we look at one type of arithmetic pipeline.
An area where heavy-duty number crunching is used is to calculate statistics and solve systems of equations. These two computations involve dealing with large matrices of real numbers. A matrix is a rectangular grid of numbers. Fig. 14.5.1 shows two typical matrices:
[image: https://brahe.canisius.edu/~meyer/253/BOOK/ch14/GIFs/Fig14_5_1.gif]
Fig. 14.5.1: Two 3x3 matrices (plural of matrix)
To solve a system of linear equations, we write the coefficients of the variables in a matrix and apply a process called Gaussian elimination, named after Karl Friedrich Gauss (1777-1855). To do many kinds of statistical analyses, we invert a matrix, finding another matrix such that when the two are multiplied together, a new matrix that has 1s along the diagonal results.
Let's look at how two matrices are multiplied together. Fig. 14.5.2 shows the product of the two matrices in Fig. 14.5.1, first as just numbers and then showing the computations that gave rise to those numbers:
[bookmark: #Fig14_5_1][image: https://brahe.canisius.edu/~meyer/253/BOOK/ch14/GIFs/Fig14_5_2.gif]
Fig. 14.5.2: The product of the two matrices of Fig. 14.5.1
The value 74 in the first row and first column results from multiplying the values of row 1 of matrix A by the values in the first column of matrix B, and adding together these little products. This operation is called the inner product of the first row of A and the first column of B.
Since large computers frequently multiply matrices together often, they could be sped up if the operation of matrix multiplication were sped up, which can be done by having a very quick way of performing an inner product of two lists of numbers. These numbers are almost always real numbers, not integers as we have shown in our tiny examples, and real multiplication and real addition take a lot more time than integer operations. Moreover, the matrices are often huge, such as 1000 rows by 1000 columns.
Taking the inner product of a row and a column can be implemented by the following C code:
c = 0;
for (i=0; i<numtimes; i++) {
 c = c + a[i] * b[i];
}
Fig. 14.5.3 shows a fictitious computer circuit set up to do inner products:
[bookmark: #Fig14_5_2][image: https://brahe.canisius.edu/~meyer/253/BOOK/ch14/GIFs/Fig14_5_3.gif]
Fig. 14.5.3: Registers and circuitry to do an inner product
Some supercomputers have vector registers which are arrays of registers that hold one row or one column of a matrix. This is done to avoid the slow-down due to reading the numbers from memory.

The way pipelining can be used to speed up this circuit is to overlap the multiplication with the addition. Both of these operations take a long time in the floating point world. If we multiply Ai by Bi in one time unit, and then pass this product along to the adder for addition to C in the next time unit, then we can start doing Ai+1 times Bi+1 also in the next time unit, overlapping it with the addition to C. Fig. 14.5.4 shows how this would look in time:
[bookmark: #Fig14_5_3][image: https://brahe.canisius.edu/~meyer/253/BOOK/ch14/GIFs/Fig14_5_4.gif]
Fig. 14.5.4: Pipeline movie of inner product.
[bookmark: #Fig14_5_4]The parentheses in the second column indicate that this product is already completed; the value being added to C is the result from the previous stage.
Though this is only a 2-stage pipeline, it still cuts down the time to do an inner product by half, which can make a substantial difference in the performance of a supercomputer doing these computations over and over.

Section 14.6
Extra hardware required by pipelines

One of the common themes of this book is that nothing is free; every advance in computer hardware or software comes with a price tag. Sometimes speed is gained by using up extra memory. Sometimes extra hardware is the price, upping the circuit's cost and occupying precious chip real estate.
In the CSC-1 computer (see Chapter 7), several registers hold values stable while combinational circuits work on those values. The A and TMP registers do this for the adder/shifter circuit. The IR stabilizes the current instruction for the benefit of the decoder (not shown in the diagram). The MAR and MBR stabilize address and data inputs to memory.
When a combinational circuit is broken into stages and pipelined, registers must be inserted to stabilize the inputs to the stage. This introduces extra delay as well as more hardware. Fig. 14.6.1 shows a 5-stage pipeline with registers in between the stages to stabilize the inputs to the next stage.
[image: https://brahe.canisius.edu/~meyer/253/BOOK/ch14/GIFs/Fig14_6_1.gif]
Fig. 14.6.1: Pipeline with registers between the stages to stabilize values
[bookmark: #Fig14_6_1]Putting a value into a register takes a little time because of gate delay. Suppose the original circuit that performed the operation required 500 nsec, and suppose that it is broken into 5 stages, each stage requiring 100 nsec. Due to 50 nsec that each register requires to latch the new value, each stage really takes 150 nsec. One instruction traveling through this pipeline requires 5×150 or 750 nsec, which is 50% longer than the original combinational circuit.
But this comparison is deceptive since the pipelined version is definitely faster overall. The original circuit complete 100 operations in 500×100 = 50,000 nsec, whereas the pipelined version would take only 15,550 nsec to do 100 operations, a mere 31% of the amount of time taken by the non-pipelined circuit. Thus, the pipelined version is about 3 times faster.
(How to do the calculation of 15,550 nsec will be explained in the next section. Suffice it here that it is 150 nsec × 100 + 150×4 - 50. The final 50 is subtracted because the very last value is not latched into a register.)

Section 14.7
Theoretical Speedup

It is easy to see from Fig. 14.7.1 that pipelining saves time by telescoping operations together. Four 3-stage operations are done, first with no overlap of stages, and then pipelined.
[image: https://brahe.canisius.edu/~meyer/253/BOOK/ch14/GIFs/Fig14_7_1.gif]
Fig. 14.7.1: Non-pipelined and pipelined execution of 4 operations
Let's go through a small bit of mathematical reasoning to see what the theoretical speedup of pipelines should be.
First, assume there are k stages, n operations to do and t is the time it takes to do one stage. One simplifying assumption is that all stages require the same amount of time, which must be so when pipelining is used but not necessarily true when it is not. Since some stages of the operation may take less time to do, one operation might complete in less time on a non-pipelined machine, which would mean the pipeline is not quite as good as the theoretical speedup says it is.
In the non-pipelined machine, the total time required is nkt, since there are n operations and each operation takes kt time.
In the pipelined machine, we are most interested in the final stage where the finished products roll off the assembly line since it is only during the last stage where real work is being accomplished. However, it takes time to fill the pipe. The first completed operation does not enter the final stage until (k-1)t time units have elapsed. Thereafter, each time unit produces one completed operation. Since there are n operations, it takes nt time units to see all the finished values roll off the assembly line. The total time is then the time to fill the pipeline and then the time when completed values appear:
(k-1)t + nt
Fig. 14.7.2 shows this formula alongside a pipeline with 3 stages and 10 instructions. k=3 and n=10. t is the size of the time slice, so it corresponds to the width of one of the vertical columns.
[bookmark: #Fig14_7_1][image: https://brahe.canisius.edu/~meyer/253/BOOK/ch14/GIFs/Fig14_7_2.gif]
Fig. 14.7.2: Pipeline illustrating the formula (k-1)t + nt
[bookmark: #Fig14_7_2]Another way to derive this is to realize that the first operation takes a total of kt time units to complete. The other n-1 operations will appear in the final stage and be completed in each time step thereafter because the pipeline was being filled. Each one of them appears to take 1 time unit each. Thus kt + (n-1)t is the formula derived by this reasoning, and rearrangement of terms give (k+n-1)t which is also what we get from (k-1)t + nt after some algebra.
We must now compare these two times: nkt and kt + (n-1)t. The standard way is to take their ratio by dividing one of them by the other. If we divide the larger by the smaller, we get the speedup. If we go the other way, we get the fraction of time spent by using the faster method. Let's divide the larger by the smaller:
[image: https://brahe.canisius.edu/~meyer/253/BOOK/ch14/INSERTs/GIFs/Ins14-1.gif]
We can factor out t from the bottom two terms and then strike out t from the top and bottom, leaving us:
[image: https://brahe.canisius.edu/~meyer/253/BOOK/ch14/INSERTs/GIFs/Ins14-2.gif]
Now where do we go? At this point, we are kind of stuck. To unjam us, we will use a standard trick of reasoning in Computer Science. Imagine you are a multibillionaire who owns the largest software company in the world. Suppose you lost $10,000 accidentally by dropping your wallet or purse somewhere. Would that hurt you? Of course not, but it would certainly put many of us more ordinary folks into a tailspin. Likewise, if someone gave you, the multibillionaire, a dollar, it would mean almost nothing, but $1 to a homeless person would be a great boon.
If we look into the equation above, we can imagine that n gets very large because we can run our assembly line for as many instructions as we wish. We cannot, however, just increase k arbitrarily, since that involves changing the structure of the operation. As n gets very large, (k-1) + n gets closer to n, since k-1 stays constant and becomes smaller and smaller relative to n. Thus, the denominator approaches n.
However, the top cannot be said to approach n as n gets very large while k remains constant. If you have $1 and you multiply it by 7, you get $7 which is a 700% increase. If you are a software multibillionaire and multiply your wealth by 7, you have a huge pile of money, much larger than before. Thus multiplication is immune to the reasoning that let us ignore the k-1.
Thus, our final fraction is
[image: https://brahe.canisius.edu/~meyer/253/BOOK/ch14/INSERTs/GIFs/Ins14-3.gif]
Now we divide out n, and get k. So as n gets very large, i.e. as the number of items moved through the pipeline gets very large relative to the number of stages, the theoretical speedup approaches the number k. This makes common sense, too, since you have k workers working on a piece of each operation at the same time.
This analysis fails under several conditions. One is when the non-pipelined version is faster for one operation, as we saw when we inserted intermediate registers. Another condition is when n is not terribly large relative to k, which is what happens in an instruction pipeline when our program jumps around a lot. In those cases, we often only do 5 to 7 non-jump instructions before we branch. If there are 5 stages to the pipeline, this means the speedup is much less than k. One way to remedy this is to reduce the number of stages, and many RISC computers only have 2 or 3 stages. By making k smaller, n gets larger relative to it. However, reducing the number of stages also reduces the potential speedup. We are in catch-22.
Therefore, pipelines must be carefully tailored to the compromises that are made in a computer system. Most computers today employ pipelines, but sometimes these are shallow. RISC computers, for example, have instruction pipelines that are usually one 2 or 3 stages long. This still provides the best trade-off and best overall performance.

[bookmark: _GoBack]
20

image4.gif
ADD|MPY|SUB| Jz | ADD{NEG| SUB|MPY| DIV | MPY|SUB]

40D |MPY|SUB
150D |MPY iz

40| Neg| DY Py

ADD|NEG| DIV MPY

140D |MPY|sUB o

DD |MPY

5 8

4
title ————»

image5.gif
s | App|MPY| s apofnes| sug
o0 [P |sU oo
0D |y ADD|NE
40D [P 40D WY
00 vPy|sus|z | o

5 6

4
time—

image6.gif

image7.gif
[ER DS R

Bauma txctine 50|

XSS BT

image8.gif

image9.gif

image10.gif

image11.gif
tme———»

ME(E
mjjEjiE) e
mEE

tme———»

image12.gif
time ——————»

image13.gif

image14.gif
nk
&=1)+n

image15.gif

image1.gif
dry puta

= e e

image2.gif
45 8
Y tme————

image3.gif
ADD|NEG| SUB| MPY

D|NEG| 5

1400 [MPY ADD|NEC

|00 |MPY |3 ADD|NEG
5 8 9 10

tine—— >

