Section 11.1
Memory issues

Modern computer programs do not exist in isolation, splendid or otherwise. Even on personal computers, there is an operating system which is a program for doing input and output, handling devices at a low level and providing common service routines. On larger computers, minicomputers, mainframes and even workstations, many programs may be running at the same time, belonging to different users. All of these must peacefully coexist in order for people to get their work done efficiently and quickly.
Up to this point, we have imagined that our programs were running on the bare machine, that we controlled all of memory and all devices. We will continue this illusion when it suits us, such as when we investigate input and output. But in the real world, when several programs exist in memory at the same time, many problems can arise. For example, one program's loop may have a logical flaw, causing it to loop endlessly. If this loop's purpose is to set all elements of an array to 0, and it goes out of bounds of the array, even out of bounds of the program, it may clobber someone else's program, setting it all to 0s.
Another possibility is that a malicious person in the computing community may try to destroy others' programs or to gain unauthorized entry. If there is no protection on memory, then there is no hope of stopping such people.
Closely related to the issue of protection is that of relocation. Programs are usually written so that they start at location 0 in memory but in reality only one program can do this at any given moment. In fact, the operating system often occupies low memory, words having low numbered addresses such as 0, 1, 2, ... Thus, some way has to exist for either rewriting programs or transparently moving them from one location to another.

Section 11.2
Multiprogramming

Before we talk about protection, relocation and virtual memory in detail, we must review basic operating systems concepts which drive the need for more sophisticated memories.
Multiprogramming is the technique of keeping more than one partially completed user program in memory and switching rapidly from one to the other in order to give the illusion that the computer is working on all of them simultaneously. The operating system, abbreviated as the OS, is just another program whose code and data always occupy a portion of main memory. The OS is usually but not always at the section beginning at address 0. Some OS's start at high memory. Other OS's occupy several separate sections of memory.
User programs of varying sizes are loaded into memory when the user requests that a program be executed. These requests used to come in the form of a deck of punched cards, but now they come from a user's terminal. In Fig. 11.2.1, four user programs labeled A, B, C and D co-exist in memory. Suppose C finishes early and a new job E is started. E will need to be placed in memory somewhere, so it will probably try to fit within C's space if it is big enough. If not, D may be moved down towards B, a process called memory compaction, which causes holes (regions of unused memory) to coalesce into larger holes so that a new job may be started. In the very worst scenario, E may need almost all of memory so it may have to wait until A, B and D are done. These memory hogs will be kept waiting till 3:00 AM on Christmas day!
[image: https://brahe.canisius.edu/~meyer/253/BOOK/ch11/GIFs/Fig11_2_1.gif]
Fig. 11.2.1: Several jobs in a multiprogrammed computer system
[bookmark: #Fig11_2_1]User programs, often called jobs, use the main ALU for a while and then they start an I/O command. For example, job A may do a couple thousand additions and multiplications and then wish to write the result out to a file on the disk drive. Input and Output are often enormously slow compared to regular instructions, so a mechanism is used to offload the actual work of writing bytes on spinning disks, drums and tapes. Special-purpose computers, called controllers or channels, do the actual work of communicating with these devices. They are capable of also moving data from the I/O device into main memory while the main computer (the ALU) is doing other instructions. (Later we will investigate how it is that main memory can seemingly be used by different masters simultaneously. It actually can't but there are tricks to make it look like that.)
The huge disparity in access times for various kinds of memory is what allows multiprogramming to succeed. In the table at the top of the next page, the approximate access times of registers, memory and secondary storage are listed. Note the huge jump between main memory and even the fastest hard disks -- about four orders of magnitude, or a factor of one thousand.
To read from a it requires about

 register 70 nanoseconds
 main memory cell 700 nanoseconds
 hard disk sector 1,000,000 nanoseconds
When job A wants to do I/O, it tells the OS of its intentions and in effect says, "Here is what I need done. Now do it for me." User programs are never allowed to directly read or write hard disks so that various security measures can be enforced. The OS then schedules the I/O operation, possibly making it wait until another job's operation is done. When it is possible to go ahead, a controller gets the command and takes over from there. By this time, the main computer has put job A into suspended animation and has started working on B's program. A's code and data remain in memory although the CPU is not doing anything to them right now. After a long while (long as far as the computer goes but much shorter than a blink of an eye.) the I/O controller announces that it has successfully read or written the data and A must be restarted. The way the controller announces this is usually by sending an interrupt to the main CPU, sort of electronically tapping it on the shoulder. After more bookkeeping, the CPU marks job A as ready to run and when program B has reached its own I/O operation and must be put to sleep, the CPU lets A actually start up again where it left off. To be fair to user jobs, many OS's use what is called round robin scheduling, which lets every waiting program have a crack at the CPU before going back to the first job.
This, in a nutshell, is how most multi-user operating systems work. There are of course a million and one permutations of details but even personal computers are getting these kinds of systems. Windows 95 and MacOS 8, for example, are full pre-emptive multi-tasking systems.

Section 11.3
Approaches to Relocation

In Fig. 11.3.1 a small CSC-1 program that adds up elements of an array is shown. This version uses mnemonic opcodes but no symbolic labels. Instead, absolute addresses are given. The numbers to the left are only for reference, showing where in memory these instructions would be placed:
0: LOD 1000
1: ADD 1001
2: SUB 1002
3: STD 1003
4: LOD 2000
5: SHL
6: SHL
7: ADD 1003
8: STD 1000
9: (gap)
1000: NUM 47
1001: NUM 3
1002: NUM 149
1003: NUM 0
 (gap)
2000: NUM 99
Fig. 11.3.1: CSC-1 program to compute a = a+b-c+d*4
[bookmark: #Fig11_3_1]This program begins at address 0 and references memory locations by giving their absolute addresses. If this program had to be moved to another place in memory, many instructions would have to be modified. This may seem like an easy task for a computer, which never gets bored by mindless, repetitive tasks. However, the computer does not really see STD or ADD or NUM in memory; all it sees are binary numbers. Stored program computers cannot distinguish between instructions and data in memory. The only way the computer knows that the user intends 4 to be a SUB instruction is because the PC happened to contain the address of the word with 4 in it and the instruction decoder sees a 4 in the opcode field. When programs go awry and branch into data sections, as can easily happen, there is nothing to keep the computer from interpreting a sequence of data values as a program.
This blurring of data and instructions is not a mistake or a logical failure of computer designers. Rather, it is just the opposite, a brilliant insight that instructions are just a form of data. John von Neumann is credited with inventing the stored program concept, which is what this method of storing instructions as data in memory along with regular data, although there is now controversy that he only contributed to an idea that several people conceived simultaneously. Nevertheless he saw that a program could write a new program if instructions were but data and that perhaps programs could even learn by rewriting themselves while they were running.
Things didn't work out quite this smoothly. Today instructions and pure data are usually segregated in different parts of memory to ensure that an errant program does not jump into the middle of a number table and begin running the "program" there. However, artificial intelligence investigators still work on programs that learn by modifying themselves "on the fly."
Because of these two facts, namely that programs need to be moved around in memory and that computers cannot logically distinguish between instruction codes and pure data numbers, other relocation schemes had to be developed. They rely upon rewriting each memory address at run time as it is used, usually by adding a new base address to it to get the real address. The original address is sometimes called the virtual address while the calculated address is the real address. Another set of terms is logical address and physical address.
Surprisingly, an early approach to relocation in the nascent years of multiprogramming was to actually rewrite the addresses so the code could use absolute addresses. However, each program had to be rewritten for the slot or region of memory in which it would be placed, which meant that these regions had to be fixed and all the same size. IBM went through a series of operating systems based on these different methods.
Today's approach is to add every address that the user program generates to the contents of a register. This base address register contains the address of the beginning of the user program in real memory. In Fig. 11.2.1, program A starts at location 2500, so the base address register would contain 2500 when A is running. B starts at 3600, so any address it generates has to be added to 3600, which will be the contents of the base address register. In the ALU's hardware, there is only one base address register, necessitating that every time a user program is restarted this base address register has to be reloaded with the base address of the now currently active program. In this way, when program A starts running instructions at logical word 0, the computer really retrieves the instruction from physical word 2500. Compilers and linkers can generate code starting at address 0, oblivious to where it will actually be at run time.
The method of computing physical addresses, i.e. adding logical addresses to the contents of a base address register, as described above is the standard one for certain types of systems, mostly older and simpler one, where all of a user's program and data can reside in main memory and it is stored contiguously, i.e. all together. Later systems break up a user's program into chunks called pages and a much more complex method of translating addresses must be employed. We will look at that in the next chapter.

Section 11.4
The costs of relocation

Relocation mechanisms such as base/offset addressing slow down the computer. Since every address generated by a user instruction must be added to the contents of the base address register, the delay of the adder will cause memory accesses to take longer. There are ways to speed up adders by adding extra Boolean logic, called a carry lookahead, or CLA. But there is always some drawback to these new features. One of the common themes in this course is flexibility costs.
Relocation introduces overhead into the computer. Overhead can be defined as the increment in resources (time in this case) that is required by a more complex system to do essentially the same task on a simpler system. For example, in the CSC-1, all addresses that the program generates are real already -- nothing has to be added to them. Of course the CSC-1 cannot run more than one program at a time. Running the same user program on the CSC-1 and on a machine with run-time relocation shows the CSC-1 to be faster. Suppose that the program on the CSC-1 completes in 8 seconds, and the same program on the other machine completes in 10 seconds. Then we would say that there was a 25% slowdown of the program on the new machine, calculated by taking (10-8)/8 = 2/8 = .25 = 25%
We could also say that there is a 25% overhead on the new machine due to the memory relocation mechanism. To calculate overhead, run the same program on both machines and find the difference. This difference, which is the extra time required by the new hardware, is the overhead, or time "wasted" by the new mechanism. In order to make comparisons, we standardize these differences by dividing them by the slower running time to come up with a percentage.
The term waste is misleading as used above. It says that running the same program on two machines gives different timings, and all other things being equal, we would prefer the faster machine. Of course, things really aren't equal, because multiprogramming can't be done on the older, faster machine unless all the addresses are rewritten, which introduces delays and problems of its own. So we use the term overhead instead of waste and mean by it the cost in performance that we have to pay in order to get the new capabilities.
Overhead is also used to apply to operating systems in general. Every microsecond spent doing an instruction in the OS code is one that could have been spent doing user code, or so one might think. However, it is impossible to imagine living without the services of the operating system anymore so we have to be willing to let it run some of the time. Moreover, the OS lets several programs use the overall system, including CPU, main memory, I/O controllers and I/O devices, much more efficiently than just one program could. Again, we are willing to live with a certain overhead because the alternative is to go back to the dark ages of computing and batch processing.
The overhead of modern operating systems is shocking, often as high as 50% to 75%. That is, 3 out of every four machine instructions is spent running OS code instead of user code. A goal of every software house and computer vendor is to give the user "the most bang for the buck", and reducing overhead is an obvious way to do this. But sometimes the kinds of services we demand of the OS require very complicated algorithms that inevitably introduce overhead.

Section 11.5
Protection

Closely related to relocation is protection which is needed to prevent accidents or malicious interference, such as when a program overwrites memory belonging to another program. Surprisingly, a user program can never harm a program "downwind" of it, that is, any program whose base address is lower than its own base address, because that would require negative addresses, and all addresses are interpreted as unsigned, binary numbers.
Several different protection schemes exist. IBM mainframes use key-controlled memory protection. Each user program is assigned a key, which is a small unsigned binary number, usually 4-bits long. Main memory is divided into sections called banks which are equal sized, such as 4 Kilobytes long. A user program is allocated as many of these banks as were needed to store its instructions and data. When an address is generated by an instruction, the key is sent to the memory system along with the address and the memory compares that key value with the key associated with the desired bank of memory hardware. If they are different, an error is signaled. A key value of 0 is reserved for the operating system, which is allowed to tamper with any part of memory.

Fig. 11.5.1 shows a system in operation with four jobs and the operating system.
[image: https://brahe.canisius.edu/~meyer/253/BOOK/ch11/GIFs/Fig11_5_1.gif]
Fig. 11.5.1: IBM's key protection of memory
One drawback of this method is that the size of the key determines how many jobs could be simultaneously active. Four bits means that there could be a maximum of 15 user jobs at any one time, since 0000 is reserved for the operating system. An advantage of this method is that the memory for a user program did not have to be allocated contiguously, i.e. in one long unbroken chunk. It could be spread around the memory. Later virtual memory systems have the same flexibility to break up memory as they need.
Another method, used on CDC mainframes and some micros, can only be used if memory for a job is allocated contiguously as shown in Fig. 11.2.1 (and again in Fig. 11.5.2 below). Another register, the field length register, exists to compare the memory address generated by a program with the maximum address that this program can reach. If the generated address is less than, all is well. Otherwise, the program is trying to reach beyond the end of its memory and an error is signaled. Programs that suffer these errors are halted by the hardware and punished by the operating system.

Fig. 11.5.2 shows the combination of base address register and field length register. The base address register contains an actual memory address, but the field length register contains the maximum length of the program's memory region in words. For Job A, this would be 1100 since Job A starts at (real) address 2500 and ends at 3599, which is 1100 words.
[bookmark: #Fig11_5_1][image: https://brahe.canisius.edu/~meyer/253/BOOK/ch11/GIFs/Fig11_5_2.gif]
Fig. 11.5.2: Base address register for relocation; Field length register for protection
Every logical memory address that Job A generates while executing instructions is added to the base address and the new value is copied into the real MAR. At the same time, that logical address is compared to the value in the field length register, and if the result is negative, a memory protection error is signaled and the memory operation never completes. Further, Job A is halted in its tracks and a nasty error message is printed out by the operating system.
Comparison is usually done by subtraction. In this system the sign of the outcome determines if the field length value is less than or greater than the logical address.
Fig. 11.5.3 shows this two-way manipulation of the logical address, which happens at the same time and uses extra hardware for speed. The main adder of the ALU is not used to do this address translation.

In Fig. 11.5.3, an illegal out-of-bounds address is generated, which causes the program to halt. The logical address, 1205, is larger than the field length, which is only 1100 words. Though the physical address 3705 is generated (1205+2500), it is never allowed to get to memory because the error halts everything until the operating system can clean up after the offending program.
[bookmark: #Fig11_5_2][image: https://brahe.canisius.edu/~meyer/253/BOOK/ch11/GIFs/Fig11_5_3.gif]
Fig. 11.5.3: Translation of logical address and checking for memory protection violation
[bookmark: #Fig11_5_3]

Section 11.6
OS modes and instructions

At this stage you should be wondering how these special registers, the base address register and the field length register, get set. In the IBM world, how do the memory keys get changed? It is not enough to say that the operating system somehow does it, because the operating system is just another program, using the same ALU and the same instruction set as user programs, right?
Well, not exactly. True, the operating system is just a program, but it does have access to more instructions than user programs. In order to make multiprogramming work, the hardware must have at least two operating modes:
	privileged mode
	Special instructions can be done while in this mode, so only OS code can run in privileged mode. Certain registers that cannot be read or written in user mode can be changed by the OS while in this mode.

	user mode
	User programs operate in this unprivileged state. They cannot change the base address or field length registers, nor can they send signals to I/O controllers. They cannot execute certain other instructions, especially HALT.

There is a flip-flop in the CPU that says whether or not the machine is running in privileged or user mode. If a user program attempts to execute a forbidden instruction or if it attempts to access one of the special registers, an error is signaled and the program is killed, usually after another nastygram from the OS.
The mode flip-flop can be changed from unprivileged mode to privileged mode at any time. The OS can issue an instruction to do this and it must make sure the machine is in unprivileged before it hands control back to a user program. But how does the mode flip-flop ever get set back to privileged once it is in unprivileged mode?
Any one of the fatal errors we have discussed so far will cause the mode to automatically change back to privileged so that the OS can clean up after the offending job. But there needs to be a kinder, gentler way to change back, and it is called a trap or supervisor call. An unprivileged machine instruction does it. Even user programs can call it, and in fact they must since this is the only way they can voluntarily return the system's state to privileged mode.
Many computer systems call this instruction trap and use a mnemonic like TRP. IBM mainframes call it a supervisor call, since they sometimes call their operating systems the supervisor. Their mnemonic is SVC. We will use the term trap from here on.
One of the standard ways of viewing the operating system is as a service provider. This is in contrast to viewing it as a governor or controller, although it must be this, too. Thinking of the operating system as a bundle of services and subroutines that all user programs can, and in fact must, use makes it easier to visualize what a trap does and why it is needed. The services provided by an operating system are many and varied. Here is a small list:
· stop the program when it is done and clean up after it
· initiate and monitor input and output
· change program characteristics like its memory size or its priority
· send and received messages to other user programs
· create children programs
In some ways the operating system is merely a huge collection of subroutines. There is one for ending a job's existence. Another subroutine exists for sending and receiving messages and yet another for creating children programs and so forth. User programs call these subroutines when they need them, like any program calls a subprogram when it needs it. (Remember that the terms subroutine, subprogram, function and procedure are all synonymous in this discussion.) There must also be a tiny core of program in the OS that starts the whole system going but once it is going, it is more or less in the hands of the user programs. After all, OS's exist for the pleasure and benefit of the user programs, don't they?
	ASIDE: If you have never seen the movie 1983 "Tron," you should. It is a fascinating visual joyride through the interior or a computer. The operating system is called the MCP, Master Controlling Program, and it acts like one! The main question that the inner components ask each other is "Do you believe in users?" "Tron" is a neat way to gain an appreciation of computer architecture.

The fly in this ointment is that ordinary programs can make subroutine calls to any memory address in their own code, but we cannot allow user programs to call the operating system at any old location. The operating system must be called only at well-defined entry points that correspond to published subroutines. A call to the operating system is called, not surprisingly, a system call.)
One of the weaknesses of the von Neumann architecture we have been studying all along is that a CAL instruction can specify any address as its jump target, although we almost always want that address to correspond to the beginning of a subprogram. User programs cannot be allowed to jump to any address because they could easily bypass security checking. In fact, a user program could jump to an instruction that changes the mode to privileged and then it would be able to do anything. This is exactly the kind of loophole that hackers seek when they break into systems, because they can't do much until they get the full privileges of root (also called superuser.)
The TRP instruction is like a CAL instruction except that it specifies a service number instead of a memory address. This service number is just the numerical form of the system call, which is the published subroutine that the OS makes available to users. Once the operating system gets control, it looks the service number up in a table and branches to the actual subroutine that implements that service. In this way, no user program can jump to a location that the operating system doesn't want it to; it can only jump to the entry point of the service subroutine. Generally, the first thing that the service subroutine does is to check the user program's "papers," i.e. it verifies that the request is in order, all the parameters are okay, and that this user has permission to call this routine. If not, then a system error will abort the program. (This is termed an abend in IBM-ese, which is a contraction of "abnormal end.")

[bookmark: _GoBack]Fig. 11.6.1 shows this calling of a system subroutine via a TRP. The call is equivalent to the C version of the UNIX system call read:
n = read(fd, buf, m);
which requests the operating system to read up to m bytes from the I/O device pointed to by fd and put it into the character array buf.
[image: https://brahe.canisius.edu/~meyer/253/BOOK/ch11/GIFs/Fig11_6_1.gif]
Fig. 11.6.1: Read system call; PUSH #3 stands for 3 parameters;
TRP means to call system call #2 (which is read)
[bookmark: #Fig11_6_1]This mechanism or something very similar to it is used in most multiprogrammed systems. It is interesting to see how there is a continual interplay between hardware designs and the uses to which the hardware is put. For example, if computers had continued to be used by just one person at a time, none of this stuff for protection and relocation would have been needed. In Chapter 13 we will see how another user trend influenced hardware, namely the need to run very large programs or use more memory than is actually available. This is how virtual memory came about.

16

image4.gif

image5.gif

image1.gif

image2.gif

image3.gif

