Section 19.1
Interrupt driven I/O

Polling algorithms like the one discussed in Chapter 21 are terribly inefficient because the CPU spends most of its time waiting for something to happen. Since the CPU is much faster than the peripheral, the CPU may spend 90% or more of its time not doing any useful work.
If more than one program resided in memory, the CPU could switch over to another program and execute its instructions. Computer systems started to do this in the mid-1950s and the increase in job throughput was enormous. In the same amount of wall clock time, many more jobs could be completed than before.
The main problem is how to get CPU to go back to the original program once it began working on a different program. One strategy would be to include a hardware counter in the CPU so it could time itself and only do a certain number of instructions before returning to the original program to see if the peripheral had finished. A better method is to continue working on another program until the peripheral is actually done. The burden would lie on the peripheral to alert the CPU so it could resume the original program, rather than making the CPU check in periodically.
Interrupts are signals that peripherals send to the CPU when they are done with their task. An input/output system that relies upon interrupts rather than polling is called interrupt-driven I/O.
The normal sequence of actions goes as follows. The CPU encounters an I/O operation in program A. It starts the correct peripheral doing the requested input or output and then switches over to a different program B and executes its instructions. When the peripheral is done, or if it requires special attention such as error handling, it sets a certain wire high, called an interrupt request wire. This causes the CPU to stop executing instructions in program B and to go back to program A.
Interrupts happen anytime while the CPU is executing instructions, but the timing of the switchover to another program must be done carefully to avoid chaos. When the CPU starts its fetch/decode/execute cycle, it checks the interrupt request wire. If it is 0, the CPU continues doing the instruction in the regular way -- fetching the instruction pointed to by the PC register, storing it in the IR, decoding it, incrementing PC and executing the instruction.
But if the interrupt request wire is high the CPU must not do the instruction pointed to by PC, but instead jump to a section of code called the interrupt handler routine. This routine reads the status register of the peripheral's memory mapped registers and takes whatever action is necessary to wrap up the input/output operation or to fix an error.
The way the CPU is told to jump to the interrupt handler routine is not magical. The interrupt request wire is ANDed with a timing wire that is high right before the fetch/decode/execute cycle is started. If the output is 1, the current contents of the PC, which contains the address of the next instruction that would have been executed, are copied into a safe place so that program can eventually resume. Then a different value is put into the PC, and the fetch/decode/execute cycle is allowed to proceed. This new value is the address of the beginning of the interrupt handler routine, which is usually in low memory, for example starting at address 64.
After the interrupt handler routine finishes, the saved PC is copied back into the PC and the interrupted program resumes, not even "knowing" that anything unusual happened.

Section 19.2
Pictorial Representations of Interrupt Cycle

Fig. 19.2.1 shows the standard instruction cycle, sometimes called the fetch/decode/execute cycle. Every CPU repeats this basic algorithm over and over and over until the power goes off. When it first starts, special circuitry sets the whole ball of wax in motion by putting 0 into PC, thus ensuring that the program starts at a fixed place.
[image: https://brahe.canisius.edu/~meyer/253/BOOK/ch19/GIFs/Fig19_2_1.gif]
Fig. 19.2.1: The basic instruction cycle

When another device wants the attention of the CPU, it sets the interrupt request wire high. The CPU continues to execute the current instruction, but when it is done, it alters its next cycle as shown in Fig. 19.2.2.
[bookmark: #Fig19_2_1][image: https://brahe.canisius.edu/~meyer/253/BOOK/ch19/GIFs/Fig19_2_2.gif]
Fig. 19.2.2: Interrupted instruction cycle
[bookmark: #Fig19_2_2]The only difference is that a different value is put into the PC, thereby effecting a branch to a chunk of code that handles the interrupt, and the old PC is saved so the CPU can return to the place where it left off.
It is ironic that the controller circuitry which is intimately wedded to the actual peripheral device often has a complex processor inside it, a processor which usually spends its time polling the device! However, the controller has no other task to perform, no other user program to execute. It only exists to snatch the data as it comes flying off the peripheral and capture it into a register so the main CPU can examine it at its leisure.

Section 19.3
Uses of interrupts

Interrupts are used to avoid wasting CPU cycles on polling. By letting the CPU work on another program while waiting for an external event to occur or some other task to complete, the interrupt system enables more total work to get done, though any given user program is not necessarily speeded up at all, and in fact may be slowed down a bit.
What if there is no other program? For example, in older personal computers, there is only one program running at any given time. Of course, nowadays many operating systems for personal computers use preemptive multitasking, which permits personal computers to run a lot like their mainframe cousins. Many different tasks or process are running at any given time, and they all share the same CPU.
There are two reasons for using interrupts in a one-user system. The first is that the CPU must monitor the hardware, such as the keyboard, the mouse, the power supply, the screen, and even the clock. Any of these devices can interrupt the CPU, causing it to pay attention momentarily.
The second is that even a one-user system may have multiple tasks that do a variety of utility functions such as checking for incoming mail, printing large documents while the user continues working on something else or doing necessary housekeeping. These are called background tasks. More and more the kernel or shell program, which is the main one that the user interacts with, is multi-tasked so that it can do a number of functions simultaneously. The newest Macintosh operating system, MacOS 8, released in mid-1997, has a multi-tasking Finder (the Mac's name for the shell) that allows the user to initiate a number of tasks without waiting for them to finish, such as copying large files. UNIX calls this putting a program in the background.
Now let's discuss hardware control, which is still one of the main uses for interrupts. The clock is a quartz crystal to which electricity is applied, causing it to vibrate constantly at a known rate, the output wire of the clock generates a sequence of pulses which are used to interrupt the CPU. The clock interrupt handler adds 1 to a memory location so that the computer's sense of time increases by a fixed amount, such as 1 microsecond. This memory location can then be used to keep track of dates and times or displayed on the screen.
The keyboard and mouse are the primary input devices for personal computers. When a user is running an application program like a word processor, that program is really in control of the CPU. To allow the user to give it commands via the keyboard and mouse, the hardware arranges for a key depress to generate an interrupt. The operating system gets control after the interrupt and deciphers its origin and meaning, and takes appropriate action. In the case of the word processor, a regular key depress, such as the user typing an "A" key, the operating system would put the ASCII code for "A" into the input buffer for the program so that when the word processor resumes it can read the input buffer and discover the "A" from the user.
Not all interrupts pertain to the running program. This book was written written on a laptop computer that has a battery. When the battery's energy content dips below a certain level, an interrupt is generated causing the operating system to take action such as flash a warning message to the user or even turn off the disk drive and dim the screen.
Another use of interrupts in single-user computer systems is to generate alarms, or timing signals, for application programs. Microsoft Word, like other systems, has an option that causes the current document to be saved every 2 or 5 or 10 minutes, according to the user's preference. Word asks the operating system to set an alarm for the desired amount of time. When the alarm goes off, the operating system gets control and causes Word to autosave the document.

Section 19.4
Signals

Interrupts always cause the operating system to pop back to life and begin running the interrupt handler. Therefore user programs never actually see raw interrupts. To simulate interrupts, operating systems create messages called signals which they send to processes. These messages are usually intercepted asynchronously which means that they can happen any time; they are not timed to occur at precisely one given moment in the machine cycle and not another. Such messages cause the program to suspend its normal flow of control and go off and handle the signal with a special subprogram, just exactly like interrupts work.
Fig. 19.4.1 shows a simple C program that continuously adds 1 to a counter. When it receives a signal called SIGINT, it handles it by jumping to the handle() function and running that code, which prints out the counter value. Then it goes back to where it was interrupted and continues. In most UNIX systems, the SIGINT signal is sent when the user presses CONTROL-C on a terminal from which the program is running. There are more than 30 other signals in UNIX, some of which have special system uses and some which can be assigned meanings by user programs.
 #include <stdio.h>
 #include <signal.h>

 int counter=0;

 void handle ()
 {
 printf ("Counter now = %d\n", counter);
 }

 int main()
 {
 signal (SIGINT, handle);
 while (1) {
 /* do stuff */
 counter++;
 }
 }
Fig. 19.4.1: C program for UNIX showing simple signal handler
[bookmark: #Fig19_4_1]

Section 19.5
Summary of uses of interrupts

To summarize the uses and roles of interrupts, we list the following.
1. Interrupts allow I/O devices (actually their associated controllers or channels) to alert the CPU that an I/O operation has been completed.
2. Interrupts force a compute-bound program to give up the CPU when its time quantum is used up so that another program can get a chance to run.
3. Interrupts allow the OS to gain control of the CPU every so often so that it can do necessary housekeeping chores.
4. Interrupts increment the time register so that the system can accurately keep track of the current time and date.
5. Interrupts allow the OS to gain control in case of hardware emergencies and allow the system to crash gracefully.

Section 19.6
Maskable and Nested Interrupts

Sometimes the operating system is performing critical code which cannot be interrupted lest crucial data structures get garbled. To prevent interrupts while in these places, the operating system can disable all interrupts or mask out certain interrupts. Some systems with the latter ability use an interrupt mask which contains one bit for each different type of interrupt. Other systems use priority levels where each interrupt type has a number and interrupts with a higher number can interrupt the operating system if it handling a lower-numbered interrupt.
If interrupts are not disabled or masked, the operating system may get another interrupt while it is in the middle of handling a first interrupt. Since the hardware stores the PC value of the interrupted program in a known place, either a register or a specific memory location, a new interrupt will wipe out the previous PC value, making it impossible to return to the original place in the program. Interrupts that occur when the operating system is handling a prior interrupt are called nested interrupts, like nested procedure calls.
There are several strategies to prevent problems with nested interrupts. One is to disable interrupts while in a handler. But disabling interrupts is dangerous because no one can catch the CPU's attention until it voluntarily enables them again. If the interrupt handler has an error, especially an endless loop, there can be no recourse except to turn off the power. Thus, interrupt handler routines are usually not written by novice programmers and are extensively tested before being released.
Another strategy is to allow for nested interrupts by saving the PC on some sort of a stack, either a hardware stack made up of interconnected registers or in main memory. Most real hardware has enable and disable instructions as well as an interrupt stack. Some chips have an interrupt stack that is 8 deep, which means that they could have up to 8 pending unfinished interrupts. If more come in, the stack will overflow and something will be lost with disastrous consequences. In such cases, it is likely that the operating system will disable any future interrupts until the stack depth goes down.
Because of the possibility of future interrupts, all interrupt handling routines must be as short as possible. It may not be possible to do all the work that is required to take care of I/O tasks in the short time of an interrupt handler, so the OS schedules the continued work to be completed later. Interrupt handlers should only do the minimum amount to grab data that is coming from or going to a mechanical device. Once data is in memory, it can be massaged into the proper form when things quiet down a bit.

Section 19.7
Returning from Interrupts

An interrupt handler is a form of subroutine, one that is called involuntarily from a program, rather than voluntarily via a CALL instruction. However, the return from an interrupt is a voluntary occurrence, but it cannot use a simple RET instruction for several reasons. One is that the old PC needs to be fetched from where it was stashed when the interrupt occurred. Another is that in a multiprogrammed system with multiple users, the jump to the interrupt handler caused the CPU to switch from user mode to privileged mode so a return from the interrupt must cause the mode to switch back to what it was before.
Thus, most systems have an instruction similar to the VAX's REI instruction, which stands for Return from Exception or Interrupt. This privileged instruction is the equivalent of RET except that it changes privilege levels and sets the interrupt priority mask to allow interrupts of the same or lower level to now interrupt the CPU.
Fig. 19.7.1 shows a user program getting interrupted, the interrupt routine being executed, and a return via an REI instruction. While the instruction at 1384 is executing, PC actually contains 1385 because the CPU increments PC after fetching the current instruction and before executing it.
[image: https://brahe.canisius.edu/~meyer/253/BOOK/ch19/GIFs/Fig19_7_1.gif]
Fig. 19.7.1: Code showing the interrupt routine
[bookmark: #Fig19_7_1]When the interrupt wire goes high, during execution of the LOD M instruction at 1384, the hardware completes the current instruction. But instead of continuing on with the ADD Y at 1385, it puts 64 into PC while simultaneously copying the current PC value (1385) into a safe place. This causes a change of control flow to 64 while preserving the return point, exactly what a CAL instruction does, although a CAL instruction does it voluntarily. After finishing the interrupt handler routine, REI copies the old PC value from the safe place back into PC, causing a jump back to where the program was before the interrupt came in. The protection level changes so that the interrupt handler can run with full privileges and can access any device or any part of memory. Obviously, the protection level has to be set back to unprivileged during REI or else the user program will suddenly find itself in complete control of the computer, a huge security breach.

Section 19.8
Discovering the culprit by polling devices

In the real world of devices and events, several things can happen. The computer can receive another interrupt while it is currently handling an interrupt. Or the computer can receive interrupt signals from more than one external source at the same time. Real hardware must make provisions for every scenario.
Priorities are one way to sort out multiple interrupt signals and several strategies for assigning priorities to devices have been invented. One way is to attach each device to the CPU and have the CPU's circuitry make direct decisions. This is never done because there are just too many different peripherals and too many different kinds of peripherals, making it impossible to standardize or generalize the handler software.
Another commonly used method, one of the simplest, is to have all devices attach to a single interrupt request wire which they drive high when they need to interrupt the CPU. Of course, more than one device might drive the wire high at the same time and the CPU must discover which one requested the interrupt. The CPU does this by using memory-mapped I/O to query each device in turn, looking at its status register to discover if it was one of those requesting an interrupt. The first one to be noticed is the one that the CPU handles, so the order of the device in the CPU's list determines the priority of the device. It is easy to change the order of this list and thereby change the priority of the devices. This method is called polling because the CPU asks each device if it requested an interrupt.
Interrupt polling suffers from the same problem as when actual input is done via constant monitoring by the CPU -- it wastes time. In the case of interrupts, this may be critical because there may be hundreds of peripherals but the CPU has only tens of instruction cycle times to get the interrupt handled. So while it is suitable for some small systems, it is impractical for mainframes which may have huge disk "farms" and hundreds of terminals attached to them.

Section 19.9
Prioritizing Interrupts

Not all devices have the same speeds or characteristics. Some like keyboards are extremely slow compared to CPU speeds. A human typing at the rate of 100 words per minute is pressing keys at the rate of 8 per second. Each keystroke generates a byte that is sent to the CPU via an interrupt. In the space of 1/8 of a second, or 0.125 seconds, a 1 MIPS processor could do 125,000 instructions. A new Seagate hard disk released in 1997 can transfer 10 megabytes per second making it ten times faster than a 1 MIPS computer.
High priority devices should get more and faster attention from the CPU. If both a high priority and a low priority device drive high the interrupt wire at the same time, the CPU should handle the high priority device first since it is likely to lose its data faster than the slower device. Likewise, when handling a low priority device, such as the keyboard, the CPU should allow higher priority devices to interrupt it, but not lower ones. For example, suppose that the CPU is in the middle of handling an interrupt from the keyboard. If an interrupt request from the hard disk comes in, the CPU should jump to the hard disk interrupt routine and take care of it, returning to the keyboard only when done with the hard disk. However, if the CPU is handling an interrupt from the hard disk, it should ignore all interrupts from lower priority devices, such as the keyboard and the printer.
Fig. 19.9.1 shows daisy-chaining as an alternative to explicit polling. In this system, the CPU is connected to three peripherals in a daisy chain.
[image: https://brahe.canisius.edu/~meyer/253/BOOK/ch19/GIFs/Fig19_9_1.gif]
Fig. 19.9.1: Daisy-chained peripherals to establish interrupt priorities
ACK=acknowledge, REQ=request
[bookmark: #Fig19_9_1]All peripherals are hooked to the address bus and to an interrupt request wire. Whenever any of the peripherals wishes to interrupt the CPU, it drives that wire high (injects current into it to change its voltage level). Sometimes more than one will drive the wire high at the same time. The CPU then asserts INT ACK high, which goes into the first device, closest to the CPU. If this device were one that set INT REQ high, it will absorb the INT ACK signal and send out 0 on the INT ACK wire it to its neighbor. If it was not 1, then it sends out 1 on the INT ACK wire to its downwind neighbor. No device is allowed to proceed with the interrupt unless its incoming INT ACK wire is 1. The first interrupt requester in the line, the closest to the CPU, will get go while others will have to wait. Priority is thus established by position on the INT ACK chain.
When a peripheral gets permission to continue with the interrupt, it puts its id number on the address bus, which is used by the interrupt handling routine to identify who requested the interrupt. From that point on, the CPU communicates with the peripheral through memory mapped I/O.
Another way of identifying which device requested the interrupt is to have the device put a memory address on the address bus, and that address is inserted into the PC instead of always using the same fixed address. This requires that there be multiple interrupt handlers in memory. The handler that is executed implicitly identifies the device that requested the interrupt. However, it is too wasteful of memory to copy interrupt handlers for each instance of the same device, so there is still a need for an individual id number.
Daisy chaining makes it easy to assign priorities -- just string the cables in the order of first consideration. But it has the weakness that if one of the devices should fail, all those downwind of it will be cut off from the CPU. It is also difficult to change priorities since that would require actual recabling, instead of software changes. While it might seem obvious which devices should get highest priority, in reality it is not that easy to determine. Of course, this is true of any system with prioritized interrupts.
An even more serious weakness of daisy chaining is that it is difficult to mask out certain devices and ignore their interrupt requests. The next method solves these problems at the expense of more complex circuitry.

Section 19.10
Parallel Priorities

In a parallel priority interrupt scheme each device sends a signal on a dedicated wire to a combinational circuit called a priority encoder. Such a circuit is similar to an ordinary encoder, but it drops the restriction that exactly one of the input wires be high and all the rest 0. A priority encoder outputs the binary number corresponding to the highest numbered input wire.
Fig. 19.10.1 illustrates this with a simple 4-input encoder.
[image: https://brahe.canisius.edu/~meyer/253/BOOK/ch19/GIFs/Fig19_10_1.gif]
Fig. 19.10.1: Priority encoder with three different sets of inputs and outputs
In Fig. 19.10.1a, there is only one input active (number 1), so its number (01) is placed on the output wires. The top wire is the most significant wire. In Fig. 19.10.1b, there are two active inputs: 2 and 0. Since the number 2 is higher than 0, its value is put on the output wires. Fig. 19.10.1c shows the value 3 when all four lines are high, since line number 3 is the highest. The device with the highest priority, such as the hard disk drive, is connected to the input with the highest number and the lowest priority device to the 0 input wire. A separate OR gate combines all the inputs and is used to drive the interrupt request wire high. If this wire is not high, the CPU ignores the output of the priority encoder.

This method makes it easy to mask out certain devices and not allow them to request an interrupt. Another set of wires, coming out of a register that holds the mask, is ANDed with the interrupt request wires from the devices and is used as input to the priority encoder. Fig. 19.10.2 shows this arrangement.
[bookmark: #Fig19_10_1][image: https://brahe.canisius.edu/~meyer/253/BOOK/ch19/GIFs/Fig19_10_2.gif]
Fig. 19.10.2: Masking of interrupt-requesting devices in a priority system;
device 1 is currently ignored
A cute trick that the CPU can use to quickly branch to the interrupt handler for the highest priority device is to concatenate the output of the priority encoder to a memory address which can then be fed directly into the PC for quick branching to the right place. If interrupt routines are no more than 32 words long, and if the first one occurs at location 128, and there are only four devices as shown in Figs. 20.10.1 and 20.10.2, then the encoded device number can be inserted into bits 5 and 6 of the PC and 1 can be inserted into bit 7, setting all others to 0. Fig. 19.10.3 shows how this would work:
[bookmark: #Fig19_10_2][image: https://brahe.canisius.edu/~meyer/253/BOOK/ch19/GIFs/Fig19_10_3.gif]
Fig. 19.10.3: Direct formation of interrupt handler address.
device 2 is the highest priority device, so its number is inserted into the PC,
causing it to branch to 11000000 where its handler is located
[bookmark: #Fig19_10_3]

Event-driven programming
Interrupts were meant to solve one specific problem, namely how to avoid polling input and output devices to find out when an I/O operation had finished. At first, only the operating system could handle interrupts but later signals were added so ordinary user programs could respond to unusual or external events in a similar fashion. Programming languages eventually added features and structures to make signal handling easier. Nowadays this side of programming is called exception handling and all new languages such as Ada and Java must have exception handling features. Eventually a whole new way of looking at programming emerged, called event-driven programming, where the "program" is merely a collection of subroutines that are called to respond when external events are signaled, such as the user clicking a mouse button or pressing a key. The view of who is controlling computations turned completely around, from the program and the computer to the user. We are still exploring the implications of this profound reversal today.

DMA -- Direct Memory Access
As mentioned previously, many I/O transfers proceed in blocks; whole chunks of data are read in from the device and stored in contiguous memory addresses. If interrupt-driven I/O is used, each byte will cause an interrupt. All interrupts cause the CPU to execute an interrupt handler routine, which may be short or long in terms of the number of instructions executed. But even if the handler routine is short, each interrupt causes the CPU to do a number of instructions.
Pushing back the time to bother the CPU to the very end of the block transfer results in much better use of the CPU. It only has to do the interrupt handler routine once when the block transfer is done, as opposed to every byte or word within the block. Devices which allow this to happen smoothly are called DMA controllers, and DMA stands for Direct Memory Access, so called because the controller can directly access real memory without having to go through the CPU.
Fig. 1 shows the placement of the DMA controller on the main system bus, along with its associated peripheral. Don't think that the DMA controller and the peripheral are separate devices all the time, although they might be. Some DMA controllers can multiplex many peripherals at once, although high speed peripherals like video monitors and hard disk drives require dedicated DMA controllers. Another simplification in Fig. 1 is that usually there is still a peripheral controller that is interposed between the raw device and the various buses.
[image: https://brahe.canisius.edu/~meyer/253/BOOK/ch19/SUPPLEMENTAL/DMA/Fig1.gif]
Fig. 1 Placement of DMA controller on system bus

Fig. 1 shows that the controller is fully connected to the system bus, which is sometimes called the memory bus to distinguish it from other specialized buses, which we will see later. However, the peripheral is connected only to the data bus. Special wires that run between the DMA controller and the peripheral (actually its controller) are used to tell the peripheral when it can gate its data onto the data bus.
In Fig. 2 the internals of the DMA controller are shown. There are several registers which are used to keep track of the progress of a block transfer, including a word count and an address register.
[image: https://brahe.canisius.edu/~meyer/253/BOOK/ch19/SUPPLEMENTAL/DMA/Fig2.gif]
Fig. 2 DMA controller internals
The way that this works is that the CPU grabs control of the memory bus (using arbitration) and it writes a command into the DMA controller's command register by putting the value on the data bus and the memory address into which the DMA controller's command register is mapped. The usual device select decoder, not shown in Fig. 2, sees that this is meant for the DMA controller, so it copies the value into the appropriate register. The CPU also writes a word count and starting address. Then it issues a start command.
The DMA controller is not smart. In fact, it really only "runs" one program, which is in essence a for loop that allows a block copy. When it starts, it grabs control of the bus and gates the value in its address register onto the address bus. The it issues "go ahead" to the peripheral which gates its data value directly onto the data bus. If the transfer is from peripheral to memory, the DMA controller asserts WR on the control bus to tell memory to write the value on the data bus into the addressed word. If the transfer is the other way, from memory to the device, as it would be with output devices such as monitors, printers and speakers, the memory sees RD high and it will fetch the addressed word and put that on the data bus. The peripheral then absorbs the value from the data bus into its internal circuitry and copies it to the appropriate hardware.
When the peripheral is done, it asserts a signal directly to the DMA controller, such as "data ready." The DMA controller, in the meantime, has decremented the word count register and compared it to 0. If it is not 0, it increments the address register and gates that onto the address bus and the process repeats itself. If the word count is 0, the DMA controller issues an interrupt to the CPU to alert it that the transfer is done, and it then puts itself into a quiescent mode, awaiting future commands.
Just to clarify the difference between this method and the previous method, in DMA transfers the peripheral communicates directly to main memory, bypassing the CPU entirely. In the previous scheme, the peripheral communicated only with the CPU which then had to issue a separate memory command.
In order for DMA to work well, the CPU must have something else to do while the transfer is occurring, such as work on another user's program or do system maintenance. However, if the CPU is executing instructions at the same time in which a DMA transfer is taking place, it will be contending with the peripheral for the system bus. Every CPU instruction must be fetched from memory and operands, too. Results must then be stored back to memory. It seems like the memory and the main system bus will become a bottleneck and DMA will not work.
However, peripherals are often much slower than the CPU, so they rarely saturate the main bus. If there are too many peripherals hanging off the bus, and they are all simultaneously active, there can be problems, but this seldom happens on personal computers and mainframes use much faster buses and even more than one bus. Some high speed peripherals like fast hard disk drives need to grab control of the main bus for a stretch of time, so their DMA controllers assert a control line telling the CPU to wait until the transfer is done. However, such transfers are relatively rare in a program, so the user is not likely to see a terrible slowdown. (Of course, relatively rare doesn't mean that it might not happen many times every minute, but in relation to the billions of CPU instructions that are performed in between, it seems relatively rare.)
A more common situation is for the DMA controller to grab control of the bus in behalf of the peripheral, causing the memory to wait for one memory cycle, and allow its peripheral to proceed. Then the bus is released for the CPU's use, or for other peripherals, while the peripheral continues with its task of getting (or receiving) the next byte. This method is called cycle stealing because the DMA/peripheral steal a memory cycle from the CPU. The CPU can always afford to wait a bit to continue with its instruction processing because nothing in the outside world is really dependent on it. With the case of a tape or a hard disk, the physical medium is moving at a constant speed and cannot be slowed down or stopped, due to inertia. If the data flies by without being caught it is just gone. Not so with the CPU, which can stop electrons dead in their tracks for a while (electrons are extremely light and have little inertia.) Thus priority is always given to DMA devices and the CPU always allows its memory cycles to be stolen.
Another way in which DMA's impact on the CPU can be lessened is by caching the CPU's instructions in a separate cache, either on the processor chip or on a separate chip which is attached to the processor through a private local bus. In fact, both data and program instructions are cached, and if the hit ratio can be kept relatively high, the CPU will need to hit main memory very infrequently, leaving the main bus free for the I/O devices.
As can be seen, all the techniques we have studied fit together into one huge, fast system. Caching is beneficial to all concerned; DMA is handy and economical, and all sorts of fine tuning comes into play. For instance, a single memory read may result in not just one byte, but 4 or even 8 bytes being transferred over the main bus. This cuts down on accesses to the main system bus drastically. The peripheral's controller can be set up to hold 3 bytes as the actual device creates them, and then grab the data bus only when the 4th byte is ready, which would decrease the time that the peripheral needs with the system bus by a factor of 4. The only drawback is increased expense because wider buses have more physical wires and cost more.

Channel Computers
Our discussion has been a steady progression towards making the CPU more and more independent of the actual transfer of data between the outside the world the memory. Ultimately, all data must be stored in memory because that is where the CPU expects it to be when it issues loads and stores.
The final possibility is to just use another computer to handle all I/O related tasks. A DMA controller almost fits the bill because the CPU just gives it one command for a block transfer and away it goes. However, the CPU must still issue those block transfer commands and keep track of all other aspects, such as error checking and recovery.
Long ago in the history of mainframes (the 1960s) computer scientists reasoned that it would make sense to plug a small and cheap but fully programmable processor into the bus and have it do all the I/O transfers, testing the status, issuing block commands, and doing whatever else it takes to move huge chunks of data from the peripherals into main memory. The CPU would then issue very high level commands which are essentially subroutine calls to these specialized computers, which are called channel computers or IOPs (I/O Processors).

[bookmark: _GoBack]Fig. 1 shows a system with a channel computer controlling two peripherals. This picture is more appropriate to large mainframes than to personal computers or workstations because there is a separate I/O bus which the channel computer uses to talk to the peripherals. They put their data onto the data wires of this special bus and the channel computer then copies those values onto the main system bus for transfer into main memory. An alternative would be for the peripherals to still connect to the main system bus's data wires, as shown in Fig. 1.
[image: https://brahe.canisius.edu/~meyer/253/BOOK/ch19/SUPPLEMENTAL/CHANNEL/Fig1.gif]
Fig. 1 Placement of channel computer in overall system
In either configuration, the channel computer executes a program to handle the data transfer. The instructions which the channel computer executes may come from the same instruction set as the main processor, or they may be quite different. In either case, there must obviously be an IN and an OUT instruction, although memory-mapped I/O could still work, although the pretense of accessing main memory is replaced by accesses to an I/O memory space.
The IBM 360 and CDC 6600 mainframes both had special channel computers to handle their I/O, the former calling them channel computer while the latter called them PPUs, or peripheral processing units. Both channel computers and PPUs were much simpler than the main CPU and they executed entirely different instruction sets. Complex addressing modes are not needed in channel computers, neither are floating point instructions. However, integer addition, subtraction, Boolean operations, and conditional and unconditional branches are all essential. Subroutine calling mechanisms may or may not be included, depending upon the complexity of the programs which the channels or PPUs execute.
When the main CPU needs I/O done, it builds a channel program in main memory and stores the parameters that customize the program in know memory words. Then it issues an SIO (Start I/O) command with a channel number. The channel comes to life, reads the parameters from the known place in memory and begins to work its way through the program. Channel instructions are often called commands instead of instructions in order to keep clear the fact that only the CPU executes user level instructions.
When the channel program is finished, it leaves status values in known places in memory , sort of like "return values" from a conventional subroutine. Then it interrupts the CPU, which then does whatever it needs to with the data in memory. This system puts as little burden on the CPU as possible, sort of like an executive of a corporation who hands high level order down to subordinates and expects them to be done without the executive's knowledge or interference, being alerted only in case of trouble or upon successful completion. Such delegation of authority works well in both corporations and in computer systems.
If the CPU senses that something is wrong with the I/O operation, it can issue TIO (Test I/O) to find out if the channel is still alive and what is going on. The channel responds by writing status values into known memory locations, which the CPU can inspect. Sometimes the CPU may even need to abort the process by issuing HIO (Halt I/O). The way in which the CPU figures out that something is wrong is by setting a timer for the I/O operation and getting interrupted when that timer goes off. The CPU then executes a timer handling routine which inspects a table of all in-progress I/O operations and then performs an algorithm to determine if further action is needed.

23

image4.gif

image5.gif

image6.gif

image7.gif

image8.gif

image9.gif

image10.gif

image1.gif

image2.gif

image3.gif

