Section 4.1
Types of Logic Circuits

Wires and gates combine to form circuits, which are the main components of computer hardware. Circuit designers distinguish between two types of circuits: combinational and sequential.
Combinational circuits are used to compute Boolean functions. Some wires are designated as the inputs while others are thought of as the outputs. Once the inputs are all set, the outputs will appear after a fixed amount of time, depending upon the delay of the circuit. For each combination of inputs there is a definite, unchanging set of output values.
Schematically, combinational circuits appear as in Fig. 4.1.1:
[image: https://brahe.canisius.edu/~meyer/253/BOOK/ch4/GIFs/Fig4_1_1.gif]
Fig. 4.1.1: generic combinational circuit
Combinational circuits are used to construct adders and decoders and other circuits that process information.
In contradistinction, a sequential circuit uses feedback. The outputs of such circuits not only depend upon the inputs but upon prior outputs, so these circuits are mainly used for memory, either small internal memory cells called registers or in the massive quantity of memory called main memory where data and programs are stored. Fig. 4.1.2 shows the schematic of a sequential circuit.
[bookmark: #Fig4_1_1][image: https://brahe.canisius.edu/~meyer/253/BOOK/ch4/GIFs/Fig4_1_2.gif]
Fig. 4.1.2: generic sequential circuit
[bookmark: #Fig4_1_2]The designation sequential refers to the fact that the values of the outputs change over a sequence of time steps, the value in the next step depending upon the value that the circuit held in the previous step.
In order to put these circuits into context, let's categorize circuits as they are found in computer chips:
1. Processing circuits -- e.g. adder, multiplier, logical operators
2. Storage circuits -- registers (made up of flip-flops)
3. Routing circuits -- moving data between processing and storage circuits, e.g. mulitplexors, demultiplexors
This chapter deals with routing and processing circuits (at least the main one, namely the adder.) Storage circuits are covered in the next chapter.

Section 4.2
Decoders

We now look at several combinational circuits that are frequently used in computer hardware. The first of these, a decoder, translates a binary number to a type of unary number.
Suppose that there was a switch in a house or an apartment that could be set to a binary number between 0 and 7 inclusive. Depending upon which binary number the switch was set to, the light in one of eight rooms would turn on.
To turn on a light in a room, a wire running to that room must have a logic 1 on it. The switch consists of three wires, each having 1 or 0, and the set of these makes a binary number. (The ordering of these wires is obviously important, too.) A decoder is the combinational circuit that takes in the binary number and turns on one and only one of the eight output wires. Schematically, it appears as in Fig. 4.2.1:
[image: https://brahe.canisius.edu/~meyer/253/BOOK/ch4/GIFs/Fig4_2_1.gif]
Fig. 4.2.1: Schematic decoder
The number of outputs is 2 raised to the number of inputs, so decoders can get very large. For instance, if there are 10 inputs, there would be 210 or 1024 outputs. This is an exponential increase over the number of inputs. Decoders of larger numbers, such as 32 inputs, have to use various tricks to overcome this vast increase.
Quite often we refer to decoders using the number of inputs and the corresponding number of outputs, such as 2x4 (pronounced "two by four") meaning there are 2 inputs and 4 outputs, or a 3x8 decoder. If we need fewer outputs than the full number, such as five outputs for a 3-bit input number, we still use a 3x8 decoder; just ignore some of the outputs.

The circuit for a decoder is actually all the minterms, not OR'ed together. For instance, for a 3-input decoder, we get the following truth table showing all minterms:
A B C | R0 R1 R2 R3 R4 R5 R6 R7
---------------+---
0 0 0 | 1 0 0 0 0 0 0 0
0 0 1 | 0 1 0 0 0 0 0 0
0 1 0 | 0 0 1 0 0 0 0 0
0 1 1 | 0 0 0 1 0 0 0 0
1 0 0 | 0 0 0 0 1 0 0 0
1 0 1 | 0 0 0 0 0 1 0 0
1 1 0 | 0 0 0 0 0 0 1 0
1 1 1 | 0 0 0 0 0 0 0 1
The output lines have been labeled in a logical fashion to indicate the binary number that the inputs form. For example, if A, B, and C are arranged as shown, then A=1,B=1,C=0 gives the binary number 6 (1102 = 6) and line R6 (and only R6) will have a 1 on it. However, if A is considered the 1's bit, instead of the 4's bit, (which is another way of saying "if A is the least significant bit instead of the most significant bit") then we would have a different interpretation, so we must be very careful in ordering and labeling.
Fig. 4.2.2 below shows the circuit for a decoder, which consists of a number of AND gates which AND together the appropriate set of input wires to get the minterms. Since there are three inputs above, each AND gate for a 3x8 decoder has three inputs. Some of those inputs would be the negation of A, B or C. This might entail lots of NOT gates, so a common system is to form the NOT of A, the NOT of B and the NOT of C once, and then use the six wires comprised of A, B, C and their negations, and solder the appropriate ones to the AND gate inputs. In Fig. 4.2.2 we show such an arrangement. The binary numbers corresponding to the AND gates are written above the output wires to help us see which NOT wires and which un-negated wires connect to a particular AND gate. Remember that wire crossings do not mean electrical connection unless there is a dark solder point.
[bookmark: #Fig4_2_1][image: https://brahe.canisius.edu/~meyer/253/BOOK/ch4/GIFs/Fig4_2_2.gif]
Fig. 4.2.2: 3x8 decoder using regular arrangement of inputs
[bookmark: #Fig4_2_2]The regular arrangement of inputs and outputs shown in Fig. 4.2.2 will be used to build a generalized circuit, called a PLA, or programmed logic array.
Decoders are used in many different parts of computers. Memories use them to select specific memory cells whose address is put on the input wires to a decoder. One and only one output wire will be active, which will enable that one selected memory cell to be read or written. The control unit of the CPU, which actually performs machine instructions, also uses decoders to determine which instruction is going to be performed, based on a numerical operation code (called the opcode).
As the number of inputs increase, the number of AND gates increases exponentially. For instance, if we add 1 more input (so that we now have 4), the number of AND gates, as well as output lines, doubles. This means that the input wires, and the output of the NOT gates attached to those inputs, have to supply voltage to too many AND gates. (We sometimes say that these wires have to drive too many other gates, where drive means "supply voltage to.") Consequently, real decoders that are fairly large use NIBs at regular intervals to amplify the signals. Moreover, fan-in on AND gates may often be exceeded, requiring using of cascaded ANDs to achieve the same logic. Thus real decoders may be quite a bit more complicated in terms of actual transistors, but we will ignore these details.

Section 4.3
Encoders

Encoders do just the inverse of decoders: they take in a number of wires and tell which wire has a 1 on it by giving out the binary number of that wire. Just reverse all the arrows in Fig. 4.2.1 and reverse the truth table, letting the many outputs be the inputs and let A, B, and C be the outputs.
The circuit for an encoder, however, is not merely the reverse of the circuit for a decoder because logic gates cannot be "run backwards." Instead, we can use either the sum of products (minterm) construction or a closely related chain of reasoning.
There are 8 input wires to a 3×8 encoder. One and only one of which will have a 1 on it, while the others will have a 0. This is a very important requirement, because if it is violated, say by two input wires simultaneously being at logic 1, then the output is invalid.
Here is a way to visualize what the encoder does. There are eight wires going into it, labeled from 0 to 7. Only one of these wires can have 1 on it. That wire's number is then shown in a window in binary (see Chapter 6 if you are unfamiliar with binary numbers.) Fig. 4.3.1 shows wire 6 with 1 on it and the encoder proudly displaying 110 (6 in binary).
[image: https://brahe.canisius.edu/~meyer/253/BOOK/ch4/GIFs/Fig4_3_1.gif]
Fig. 4.3.1: When wire 6 lights up, the encoder displays the binary number 110
In a real encoder, there are no lights, but there will be 1 for some of the output wires and 0 for others, corresponding to the binary number of the input wire which is high. The only trick is to figure out how to set those output wires to 1.
Let's call the output wires X2, X1 and X0. Thus, when input wire 6, I6, is 1, X2=1, X1=1 and X0=0. If we connected I6 directly to X2 and X1, but left X0 alone, we would achieve our goal of displaying 110 (which is binary for 6).
We are not done because we need to also account for I7, I5, I4 and so on. Each of these will activate a unique set of the three output wires: X2, X1 and X0, but only at different times. Once we figure out what the binary representations are for 0, 1, 2, ... up to 7, we then connect the input wires to their respect output wires but first passing them all into OR gates that feed those output wires. This is shown below:
[bookmark: #Fig4_3_1][image: https://brahe.canisius.edu/~meyer/253/BOOK/ch4/GIFs/Fig4_3_2.gif]
Fig. 4.3.2: 8x3 encoder
[bookmark: #Fig4_3_2]Notice that 0 is left dangling, not connected to anything, because the number 0 means that none of the OR gates should have a 1 on their input -- all of the three outputs should be 0.
Decoders can be thought of translators of binary numbers to unary, and encoders the opposite. Remember that unary is a numeration system, used only in theory, that signifies the magnitude of a natural number by a number of 0s. For example, 5 is 00000, while 23,473,309 is 0000.... well, you get the idea! To get the unary number, lay out the output wires of a decoder in left to right order, starting with the highest address, and count all the 0s from the right end (the I0 wire) to the first 1.

Section 4.4
Multiplexors and Demultiplexors

Multiplexors and demultiplexors are circuits akin to decoders and encoders. They are used to route one selected signal from a group of wires onto an output wire, where the selection takes the form of a binary number. Fig. 4.4.1 shows a 4 input multiplexor:
[image: https://brahe.canisius.edu/~meyer/253/BOOK/ch4/GIFs/Fig4_4_1.gif]
Fig. 4.4.1: 4 input multiplexor
There are four data input signals: I0, I1, I2, and I3, and only one output X. After gate delays, X will have the same value as one and only one of these inputs. Which input is determined by the control input signals: S0 and S1. These two form a binary number, written left to right as S1S0. If both are 0, the binary number on these two wires is 0, and the AND gate at the top will be active; all other AND gates will give only 0 because at least one of S0, S1, S0', and S1' will be 0. In this case, the I0 signal will be copied into the OR gate input wire and on to the X output. The other three inputs to the OR gate can only be 0, which means that I0's value is the only one that can influence X's value. A similar situation holds when S1S0 = 10, for instance, in which case, I2's value is copied onto X, and so on for the other values.

If the OR gate and the four inputs I0, I1, I2, and I3 were removed, what would remain would form a perfectly good 2x4 decoder. In fact, another way of showing a multiplexor is by drawing the decoder separately and having it produce four distinct address wires: A3, A2, A1 and A0, which are then ANDed with the four data input wires, as shown in Fig. 4.4.2.
[bookmark: #Fig4_4_1][image: https://brahe.canisius.edu/~meyer/253/BOOK/ch4/GIFs/Fig4_4_2.gif]
Fig. 4.4.2: Alternate notation for a multiplexor
This notation for a decoder hides the gates, telling only what it is (a decoder) and what its dimensions are (2x4). We will use this notation frequently.
As an aside, notice that OR gates often act as collectors of signals, gathering together possible inputs and combining them. AND gates act as barriers through which a signal is allowed to pass only if another input signal is on, that is, has the value 1.
The multiplexor circuit, often called a mux, is the first that draws a distinction between data inputs and control inputs. As far as the transistors and electrons see things, there is no distinction since gates are just gates. But for humans who design and use computers, some signals "mean" different things. Our interpretation of a group of wires as constituting a binary number is another example of imposing our point of view on a group of physical entities.

A demultiplexor, often called a demux, does the inverse: it routes one data input signal onto one of a group of data output wires, depending upon the address on wires S0 and S1. Fig. 4.4.3 shows a demux. Contrary to expectations, a demux does not use an encoder, but rather a decoder.
[bookmark: #Fig4_4_2][image: https://brahe.canisius.edu/~meyer/253/BOOK/ch4/GIFs/Fig4_4_3.gif]
Fig. 4.4.3: 4 output demultiplexor
[bookmark: #Fig4_4_3]

Section 4.5
Arithmetic Circuits

It is often said that mathematicians are lazy, which is why they try to write the shortest proofs they can. While that may be true, computer hardware designers are either lazier or more cost conscious. Though most computers can do a range of arithmetic calculations, including addition, subtraction, multiplication and division, there is usually only one circuit inside the ALU, the adder, which is pressed into use for all these functions. Subtraction is the addition of the negative of the second number; multiplication can be done by repeated addition, and division by repeated subtraction. Other mathematical functions, such as sine, cosine, and square root, can be done by a power series expansion which entails only the four basic arithmetic functions.
Actually, it is possible to build a circuit to subtract two binary numbers, and it is even possible to construct circuits that do multiplication and division, but they need lots and lots of gates, which use up precious chip real estate and introduce gate delays. Thus, the standard trade-off has been to rely on a single addition circuit, the adder, although some high performance models actually do use circuits to do the other operations natively. Adders tend to be large and expensive anyway, which is why there is only one adder in the ALU.
Let us develop the adder schematically in stages, progressing from most general to most specific. An adder takes in two binary numbers and produces the arithmetic sum of these as a binary number. The number of bits in both inputs is the same, n, and the output is n+1 bits, since the sum of two n-bit numbers can be at most n+1 bits long. Fig. 4.5.1 gives the schematic:
[image: https://brahe.canisius.edu/~meyer/253/BOOK/ch4/GIFs/Fig4_5_1.gif]
Fig. 4.5.1: N-bit binary adder
The n+1st bit is labeled Sn in Fig. 4.5.1 because the numbering starts at 0. This bit is often called the carry out bit for reasons that will become clear in a moment.
The inputs to the adder usually come from on-chip memory cells called registers, which are uniformly n bits wide. Since the sum has to be stored back into a register, there is no room for n+1 bits. Therefore, this carry out bit is used to signal an error condition, called overflow.
Another notational device often used by computer hardware designers is to draw a short slash through a line indicating that there is not one line but n. In Fig. 4.5.2 is another variation on the N-bit binary adder:
[bookmark: #Fig4_5_1][image: https://brahe.canisius.edu/~meyer/253/BOOK/ch4/GIFs/Fig4_5_2.gif]
Fig. 4.5.2: Alternate notation for n-bit binary adder
[bookmark: #Fig4_5_2]

Section 4.6
Implementation of Binary Addition

Having defined the outside of the adder, namely the number of input and output wires and the general behavior, we need to build the inside which we do by examining binary addition in depth. Section 6.5 explains how to do binary arithmetic in case you need a refresher.
The sum is developed one bit at a time by adding two one-bit numbers together. But two bits could add up to 2, (1+1 = 2) and 2 cannot be represented by a single bit. Hence every pair of input bits yields not one but two output bits. In fact, one of these output bits is used as the carry to the next group of bits. Here is the truth table:
Ai Bi | Ci+1 Si | number
------------+-----------------+--------
0 0 | 0 0 | 0
0 1 | 0 1 | 1
1 0 | 0 1 | 1
1 1 | 1 0 | 2
Let us look at binary addition of two n-bit numbers, where n is 8:
 0 1 1 1 0 1 1 <--carries
 1 0 0 1 1 0 0 1
+ 0 0 1 1 1 0 1 1

 1 1 0 1 0 1 0 0
Progressing from right to left, as we usually do in our base-10 number system, we add up the columns and split up the sum as a sum digit and a carry; the carries are shown across the top in smaller type.

When adding up the columns, we see that our simple two-input truth table is inadequate because each column, except the rightmost, is a three input addition. So we need to expand our truth table:
Ai Bi Ci | Ci+1 Si | actual sum
--------------------+---------------------+----------
0 0 0 | 0 0 | 0
0 0 1 | 0 1 | 1
0 1 0 | 0 1 | 1
0 1 1 | 1 0 | 2
1 0 0 | 0 1 | 1
1 0 1 | 1 0 | 2
1 1 0 | 1 0 | 2
1 1 1 | 1 1 | 3
Only in the last row is the sum, which is 3, greater than 2. 3 is only representable as a two-digit binary number.
This three-input truth table gives rise to the schematic for a single bit slice of an adder:
[image: https://brahe.canisius.edu/~meyer/253/BOOK/ch4/GIFs/Fig4_6_1.gif]
Fig. 4.6.1: Bit-slice of an adder
This is called a full adder because it can deal with carry-in from the previous bit slice, whereas simpler half-adders cannot. Our first truth table was a half-adder.
A logic circuit can be constructed for the Ci+1 and Si columns either using sum of products form or another method. The sum of products form could be minimized if desired.

Going the other direction, we note that Si is just the exclusive OR of the three input columns. Remember that for more than two inputs, the exclusive OR is the "oddness" of the number of 1s. That is, if there is an odd number of 1s, then exclusive or is 1. We also remember that exclusive OR of two inputs can be formed using the following identity:
[image: https://brahe.canisius.edu/~meyer/253/BOOK/ch4/INSERTs/GIFs/xordefn.gif]
The Ci+1 output isn't much trickier; it is 1 when two or more of the inputs are 1. This is sometimes called a majority circuit: whenever any two or more are 1, the output is 1. Since the number of inputs is small, it is easy to explicitly enumerate "any two." The Boolean expressions for the sum and carry out bits are:
[image: https://brahe.canisius.edu/~meyer/253/BOOK/ch4/INSERTs/GIFs/adderformulas.gif]
From here it is easy to derive logic circuits. Fig. 4.6.2 shows this rather ungainly circuit:
[bookmark: #Fig4_6_1][image: https://brahe.canisius.edu/~meyer/253/BOOK/ch4/GIFs/Fig4_6_2.gif]
Fig. 4.6.2: One bit slice of a full adder

Finally, we need to chain together n of these to form a full adder. Fig. 4.6.3 shows the schematic of this using box diagrams for bit slices. It is left up to the imagination of the reader (but the actual headache of a real circuit designer and chipmaker) to replace each box with the full logic circuit using gates. This makes for a pretty large circuit!
[bookmark: #Fig4_6_2][image: https://brahe.canisius.edu/~meyer/253/BOOK/ch4/GIFs/Fig4_6_3.gif]
Fig. 4.6.3: Schematic of n-bit adder
Below is a picture of a 4-bit binary adder, showing all the gruesome details of the gates and wires.
[bookmark: #Fig4_6_3][image: https://brahe.canisius.edu/~meyer/253/BOOK/ch4/GIFs/Fig4_6_4.gif]
Fig. 4.6.4: 4-bit adder circuit
[bookmark: #Fig4_6_4]

Section 4.7
Delay of an adder circuit

Let us figure out how long it takes to add two n-bit numbers. First, we need to calculate the delay of a bit slice, which turns out to be 6d where d is the delay of a single gate of any type. The carry is actually ready at 2d, but remember the delay of the entire circuit is the length of the longest path.
Now we need to string together the bit slices, noting that what slows things down are the carries as they propagate leftward. (Of course, leftward is totally relative and applies only to our diagrams, since the circuits may be laid out on the chip in any convenient order.)
Supposing that all the Ai and Bi inputs are ready at the same moment, Si will be correct after 6d time units, and Ci+1 will be ready after 2d time units. This means that we can attach delays to each of the data wires in an adder in a block diagram, very much as if these blocks were primitive gates, as shown in Fig. 4.7.1:
[image: https://brahe.canisius.edu/~meyer/253/BOOK/ch4/GIFs/Fig4_7_1.gif]
Fig. 4.7.1: Calculation of delay of adder
[bookmark: #Fig4_7_1]Generalizing from this diagram, we reason that if we had n bits in our adder, then the delay of the final carry out would be 2nd, where d is again the delay of a single gate of any type, and the delay of the last sum bit, Sn-1, would be 6d+2(n-1)d.
Let's get a feeling for how fast real adders are. Most adders are 32 bit adders, so this gives 64d for the final carry out and 6d + 62d = 68d for the final sum. CMOS transistors introduce a gate delay d of approximately 10 ns (10 x 10-9 seconds), which is slow, while very expensive ECL transistors have a gate delay d of 2 ns. Thus, a CMOS adder would require 68×10×10-9 seconds for one addition, which is 0.00000068 seconds. Another way of looking at this is to take the inverse which would tell us how many additions the adder could do in one second, which turns out to be 1,470,588 additions. Since ECL is 5 times faster, an adder using ECL technology could do 7,352,940 additions per second.

[bookmark: _GoBack]Section 4.8
PLAs

Writing down the Boolean expression for an arbitrary truth table is easy using the sum of products method, even though the expression may not be the minimal one achievable. However, one advantage of the sum of products form is that the gate delay of a circuit built from it is always nominally two gate delay times: one for the ANDs (since they are all operating simultaneously and in parallel) and one for the OR of all the ANDs. This is not entirely realistic since amplifiers may have to be used to boost signal power and fan-in of the various gates is likely to be exceeded.
Chip makers often supply ready-made circuits on chips using SSI and MSI technology so they can be plugged together easily to build custom components. This is done for many standard circuits including decoders, muxes, memories and adders. However, if one needs to implement an arbitrary Boolean function, the hardware equivalent of a sum of products would be handier, which is what PLAs provide.
PLA stands for Programmed Logic Array, which signifies that it is a regular arrangement (an array) of logic gates, which can be altered by the user (programmed.) This is done by burning tiny "fuses" out on the chips thereby breaking electrical connections where they are not desired. Fig. 4.8.1 shows a blank PLA.
[image: https://brahe.canisius.edu/~meyer/253/BOOK/ch4/GIFs/Fig4_8_1.gif]
Fig. 4.8.1: Blank PLA ready to implement a function
Where the lines cross there are tiny connecting wires, actually microscopic strips of aluminum laid down on the silicon layers at chip manufacture time. When the PLA is programmed, high levels of current are passed through those wires that are meant to be broken. Too much current causes the wire to snap, very much like old fashioned fuses when a circuit is overloaded by plugging in too many appliances. Once broken, the wire cannot be reconnected, so no current can ever pass that way again. But if the wire is not broken, the two criss-crossed wires act as one wire, carrying current and having the same voltage. When the chip is used later, the current level through the wire is never as high as it was when the chip was programmed, so no other wires can be broken inadvertently. Fig. 4.8.2 shows the criss-crossing wires which are still connected.
[bookmark: #Fig4_8_1][image: https://brahe.canisius.edu/~meyer/253/BOOK/ch4/GIFs/Fig4_8_2.gif]
Fig. 4.8.2: "Fuse" connections in a PLA chip
We will designate the lack of a break in the fuse wires by a black dot, which is easier to see and write. Another way of thinking of this is to imagine that all the wires are originally unconnected, and we drop a bit of solder on the cross points where we want them to touch electrically.
To implement an arbitrary Boolean function that is in sum of products form, we designate which wires of the PLA are to be the inputs. Many PLAs can accommodate more than one output, as shown in the Fig. 4.8.1. We merely ignore the inputs and outputs that we do not need.
Next we assign each minterm to one of the AND gates and connect the input wire to the input of the AND where we want it to touch. For instance, suppose we are implementing the Boolean function
AB'C + A'B'C' + A'BC'
Then the first minterm AB'C would require that A's wire be soldered to one of the inputs of the first AND gate. It doesn't really matter which input is connected, although we will use the logical choice and connect the first. Next, we connect the output of the B NOT gate to another of the inputs of the first AND gate, and finally the C wire. The other input wires to the AND gate are connected to logic 1 so we will not have a "dead" minterm due to one of the inputs always being 0.
Doing this for the other two minterms uses up two more AND gates. Now we need to OR the outputs of the three ANDs together to get the final output.
Supposing that the two OR gates had four possible inputs, we get the following PLA for the function AB'C + A'B'C' + A'BC':
[bookmark: #Fig4_8_2][image: https://brahe.canisius.edu/~meyer/253/BOOK/ch4/GIFs/Fig4_8_3.gif]
Fig. 4.8.3: PLA for AB'C + A'B'C' + A'BC'
[bookmark: #Fig4_8_3]PLAs are much more economical to manufacture than custom chips, but they do use up more chip space and may introduce longer delays. There is always a trade-off to be paid.

Speeding up the adder
Using Carry LookAhead
Adders must be very fast because they are used in many different parts of a computer system, not just in the main ALU. For instance, memory protection hardware must do adds and subtracts for every memory address generated. But adders are slow combinational circuits because the carries must propagate from one "end" of the adder to the other.
Fig. 1 shows a typical 4-bit adder that adds two binary numbers, A and B. The values on the wires Ai and Bi are ready at time T0 and the circuit begins to propagate values through, forming the Si's. But, though a temporary S value appears at the same time on each Si wire, it is not correct until the carries have traveled "leftward." For instance, S0 and S1 both form their new values at the same time, but only S0 is correct because C0 may change as a result of A0 and B0 both being 1. If C0 is 1, then S1's value may change. In any event, we cannot be sure of the correct value of S1 until we have allowed enough time for C0 to form. Thus, the adder's delay depends upon how many bits wide the input values are and how long it takes to form each Ci.
[image: https://brahe.canisius.edu/~meyer/253/BOOK/ch4/SUPPLEMENTAL/CarryLookahead/Fig1.gif]
Fig. 1 A 4-bit full adder
For a real-life situation that mimics this problem of slow carry propagation, think about a long line of cars waiting at a stoplight. When the light turns green, they do not all begin moving at once. It takes each driver a small amount of time (say 5 seconds) to recognize that the car ahead is going and to move their foot from the brake pedal to the footfeed. After 5 seconds, the first car begins to go because that driver sees the light turn green. The person in the second car doesn't start for about 10 seconds later because he or she wants to make sure the first car is in motion before "stepping on it." By the time the driver of the third car begins moving, 15 seconds have elapsed, and if the line is very long, the last car may not begin to move until the light has switched back to red! No wonder people are short-tempered when they arrive at their destination, no matter how luxurious their vehicle is!
There is a way to circumvent this problem of slow adders; pre-compute some of the carries. In fact, it is possible to compute C3 in the 4-bit adder above and have it ready after the same delay as C0. Boolean algebra lets us determine the values of Ci based on Ai and Bi.
Let's figure out the first two carries, which are easy:
C0 = A0B0
C1 = A1B1 + A1C0 + B1C0
Remember that C is 1 when any two of the three inputs is 1. The first bit slice is special since there are only two inputs due to the lack of a carry-in.
C1 is equal to A1B1 + (A1 + B1)C0 due to the rule of distributivity. Substituting the definition of C0 (C0 = A0B0), we get
C1=A1B1 + A1A0B0 + B1A0B0
The definition of C1 does not depend upon C0 but only upon the values of the original A and B values, which are all available at T0.
Here is the calculation for C2. First,
C2=A2B2 + (A2 + B2)C1
and we know what C1 is (see above) so we substitute the previous expression for C1:
C2=A2B2 + (A2 + B2)(A1B1 + A1A0B0 + B1A0B0)
After multiplying this out we get:
C2=A2B2 + A2A1B1 + A2A1A0B0 + A2B1A0B0 + B2A1B1 + B2A1A0B0 + B2B1A0B0
Theoretically one could compute this for C2, C3, C4 and so on, up to all n-1 carries of the adder. All the forms turn out to be a sum of products, so theoretically the delay is 2 for each Ci. However, the number of terms quickly grows and the gate delay goes up because most gates cannot have more than 8 input wires so some cascading must be used.
A compromise is used. In a 32-bit adder, it would be impractical to calculate C31 in terms of the Ai and Bi. But it isn't impractical to calculate all the carries for a 4 bit adder. In fact, we have almost done it above. (Try calculating C3.) Then chain together 8 of these 4-bit adders and let the carries propagate slowly between the chunks. Within the chunks, all the carries are available at the same time. Thus, the delay of a 32-bit adder is divided by 4. Fig. 2 shows a 4-bit chunk and Fig. 3 shows four of these chunks ganged together to form a 16-bit adder. It is also possible to make the chunks bigger, although they almost never go above 8-bits due to the exponentially increasing complexity of the Boolean expressions.
This technique is called carry look-ahead or CLA because the circuitry "looks ahead" to see what the value of the final carry is going to be before the previous carries have been computed.
[image: https://brahe.canisius.edu/~meyer/253/BOOK/ch4/SUPPLEMENTAL/CarryLookahead/Fig2.gif]
Fig. 2 A 4-bit adder with carry lookahead
[image: https://brahe.canisius.edu/~meyer/253/BOOK/ch4/SUPPLEMENTAL/CarryLookahead/Fig3.gif]
Fig. 3 A 16-bit adder composed of 4-bit CLA adders
Let us reemphasize how an adder like the one in Fig. 3 works. All the As and Bs are ready at the same time, T0. New S values are formed. For the rightmost chunk, the carry-out is ready very quickly, approximately as long as it takes for any of the carries within that chunk to form. Then that carry is fed into chunk 2, the second one from the right and its Ss form as well as its carry out. This is then fed into chunk 3 and all of its Ss form at the same speed. Finally its carry out forms and feeds into the fourth and last chunk. Thus, if it takes d time units for one carry to form, then this adder produces the answer in 4d time units, instead of 16d time units.
Here's another view, only with a 12-bit adder composed of 4-bit CLA adders.
[image: https://brahe.canisius.edu/~meyer/253/BOOK/ch4/SUPPLEMENTAL/CarryLookahead/Fig4.gif]
Fig. 4 A 12-bit adder composed of 4-bit CLA adders
This diagram shows how C0, C1, C2 and C3 are almost instantly available, i.e. after the small delay imposed by the CLA computation. So S0, S1, S2 and S3 can be calculated very quickly and all at the same time. However, S4 won't be available until after C3 is calculated and percolates through the A4-B4 adder slice. Likewise, C3 is used for all the second stage CLA circuits, so its delay will cause each of C4, C5, C6 and C7 to be delayed. But once C3 is available, all of C4 through C7 and S4 through S7 will be available at the same time. Then C7 has two delays on it, which will slow down the computation of C8 through C11, and S8 through S11. Nevertheless, in three time delay units, all 12 bits are available, whereas before it was 12 times units. Thus, the circuit is sped up by a factor of 4, which is how many bits long each subadder is.
One other thing should be noted about address calculations, and that is that for a long time addresses were smaller than the typical integer simply because main memory wasn't that big. Thus, the special-purpose adders would not have to be full size (32 bits). For instance, the IBM 360 did integer computations in 32 bits but it used only 24 bit addresses. The gap in the CDC computers was even bigger: addresses were 18 bits but the fundamental integer size was 60 bits.
CLA is still used today because they have such a fundamental impact on a computer's speed. The essential trade-off is between hardware complexity (hence increased cost and size) and speed. Similar tricks are used to speed up multiplier and division circuits. The extra hardware there comes in the form of many additional adder circuits, each undoubtedly with its own set of carry lookahead gates!

image6.gif

image7.gif

image8.gif

image9.gif

image10.gif

image11.gif

image12.gif

image13.gif

image14.gif

image15.gif

image16.gif

image17.gif

image18.gif

image19.gif

image20.gif

image21.gif

image22.gif

image23.gif

image24.gif

image25.gif

image1.gif

image2.gif

image3.gif

image4.gif

image5.gif

