Section 13.1
The memory hierarchy

In Chapter 12, we discussed a way to increase the speed of virtual memory systems by introducing a small piece of circuitry called a TLB, translation lookaside buffer. This buffer, implemented by a tiny chunk of associative memory, holds the most recently translated page numbers so that the MMU (memory management unit), which is responsible for translating virtual addresses into physical ones, doesn't have to go to the page table for all addresses. Since most programs follow the observed principle of locality, meaning they tend to access memory words within small regions, this works well. In fact, in some systems, 90% of all addresses can be translated by looking up the page number in the TLB for the corresponding frame number (which forms the upper part of the real, or physical, address), thereby speeding up a virtual memory system to almost the same pace as non-virtual memories.
Hardware designers realized years ago that the same trick of keeping the most commonly used pieces of memory in a special, faster memory would work for all computer systems, whether they had virtual memories or not. Such a smaller memory is called a cache (pronounced like cash) because the memory isn't normally visible, but hidden.
Caches are possible because there is a wide range of technologies that can be used for memory. We have seen in previous chapters that registers are useful but very small memories inside the main processor itself. They operate at logic gate speeds, whereas main memories are much slower. But by keeping the most often used data values in registers, the program can be speeded up. Every digital computer since the 1940s has had registers, some more and some fewer.
There is a wide range of speeds in main memory technologies, too. Depending upon many manufacturing characteristics, a memory may be slower than another by one or two or even more orders of magnitude. But there is also a corresponding increase in density as the speed goes down, along with a decrease in cost per bit. All of these contrasting factors go into developing a well-balanced memory system that delivers the best average performance for most typical programs.

Let's review the types of memories that form the memory hierarchy from small, fast and expensive to large, slow and cheap:
	registers
	roughly same speed as gates, 60 nsec

	main memory
	roughly 10 times slower, often 700 nsec

	secondary storage
	disk drives, tapes, etc. often 5 orders of magnitude slower than main memory, or about 0.07 seconds.

Remember that 1 nsec (nanosecond) is one billionth of a second, or 0.000000001 seconds. Light can travel only 11 inches in one nanosecond.
Programs often keep data in registers for super-fast access while the programs themselves are stored in main memory. Secondary storage provides a large non-volatile memory where hundreds of users can store tens of thousands of programs and datasets permanently. Non-volatile means that the data is not lost once the power goes off because the 1s and 0s are recorded as directions of magnetic field on specially coated surfaces. Thus, the memory hierarchy has always been a part of computer systems.
In Chapter 13 we looked at an analogy for the trade-offs seen in memory organizations. In this analogy, the desktop is like the main memory; it is limited in size but it is easy to find something. A person's hand is like a register; there are only two but they hold the data right there while it is being used. The filing cabinet, huge but slow, is like secondary storage. As with computer systems, there is a much larger capacity in the filing cabinet than the desktop so the cost per piece of paper is much smaller for large capacity storage.
A fundamental problem with the von Neumann architecture, the basic computer design that has been in use for the last 45 years, is that the processor is limited to the speed of main memory. This results from the fact that programs are stored as data within main memory and each instruction needs to be fetched before the processor can execute it. Caches alleviate this problem.
Cache memories are sometimes made using the same kinds of VLSI semiconductor technology that are employed in main memories, dynamic RAM (DRAM). Caches can also be built out of SRAM for greater speed. SRAM, or Static RAM, uses logic gates to implement flip flops, so a static RAM is really a large set of registers. SRAMs are much larger bit for bit than DRAMs and they consume more power and generate more heat.
 Section 13.2
Cache organizations and issues

A memory cache is interposed between the processor and the main memory, as shown in Fig. 13.2.1.
[image: https://brahe.canisius.edu/~meyer/253/BOOK/ch13/GIFs/Fig13_2_1.gif]
Fig. 13.2.1: Basic cache configuration
[bookmark: #Fig13_2_1]The processor communicates directly with the cache, which serves as the intermediary for the main memory. Actually, it isn't the cache that makes the decisions about what goes where as much as the control circuitry that goes along with the actual memory bits. The processor pretends to access the main memory in the usual way and a program that works on a cache-less system should not have to be changed to work with a cache.
Caching is a transparent change to the von Neumann architecture, meaning it is an improvement that can be "felt" but not "seen." The machine language does not have to be modified to accommodate a cache, nor does the programmer need to take it into consideration.
A major design issue is where to draw the chip boundaries, indicated in Fig. 13.2.1 as the dotted line. Nowadays, both processor and cache are on the same chip for fast access. But it is possible to isolate the cache in its own chip or even its own board, which is what might be the case with large mainframes, especially if the processor itself is not entirely on one chip. Many of the common single-chip CPUs of 1998, such as the Pentium, include significant cache memories on chip.
More than one level of caching can be used. For instance, there might be a cache between the processor and the "main cache." These are called level 1 and level 2 caches. Caches can also be put on separate chips, so that the fastest cache is closest to the ALU and the registers, while other levels are off chip and perhaps even off-board.
Several issues must be settled no matter what the cache systems is. First of all, how does the cache interact with virtual memory if there is virtual memory? The obvious choice would be to check the cache first when given a memory address, and then if not found to consult the virtual memory. Another method would be to begin the virtual memory lookup at the same time as the cache is searched to telescope the time span used to find a piece of data. A third alternative would be to do the virtual address translation first and then apply the caching techniques to the resulting physical address. There may be good reasons for doing this especially if the number of bits in the physical address is much fewer than in the virtual address such needing to store fewer bits in the cache.
Another issue deals with speed and telescoping of activities. Does the circuitry, when given a memory address to read, first access the cache, and only if the data is not in cache does it go to main memory? Or will the circuitry begin the lookup in both systems and cancel the main memory read only if the value is found in the cache? Some memories do this, and it might save time. But the complexity of the memory circuitry is greater since it is harder to cancel a memory access than it is to let it continue.

Section 13.3
Associative caches

In an associative cache, there are a fixed and usually small number of cache words. Any word from main memory can be stored in any cache word--the cache acts like an unordered bag or an unsorted heap where stuff is stored. The TLB used in virtual memory systems is an associative cache.
In order to retrieve a main memory word once stored in the cache, the main memory address must be stored along with the data value. Fig. 13.3.1 shows a 6-word cache that stores values from the 32-word memory discussed in the previous section. 6 is not a power of 2 and the size of the associative memory does not have to be a power of 2, although it often is just because decoders are needed in associative memories as well as other memories.
[image: https://brahe.canisius.edu/~meyer/253/BOOK/ch13/GIFs/Fig13_3_1.gif]
Fig. 13.3.1: A small associative cache of six words
The address of main memory that is stored in the cache along with the data value is called the tag. Since memories always store some value due to the fact that the flip-flops or capacitors always contain some logic value, a valid bit is attached to every slot of the cache to say whether or not the value in it represents real data or just electronic garbage. When the valid bit is 0, the bit pattern in the tag field is considered to not match any address presented, causing main memory to be consulted instead.
Each word of a cache is called a slot or a line. It is longer than a word of main memory because extra information must be stored alongside the data, such as the valid bit and tag.
Associative memories are content-addressable, which means the contents are identified and retrieved by content, not by a numerical address. To fetch a value from a content-addressable memory, a data value, not an address, is presented to the memory. Usually, just part of the data value is given and the memory must find the rest. When associative memories are used as caches, the tag is the part that is used to find the desired contents, since it is the data value associated with that tag that is sought.
Associative memories, which require a lot more circuitry than an ordinary RAM memory, obviate searching since the circuitry "searches" every word in parallel for the desired tag. If the tag is not found, a status wire reports its absence.
When a tag is not found in the cache, called a miss because the desired value is missing from the cache, main memory must be consulted. Since that same data value will probably be required again soon, due to the principle of locality, it is written into the cache. However, the cache soon fills up, so a victim has to be selected for overwriting. Most associative caches use a very simple victim selection algorithm. They keep a counter in a register which contains the address of the next address in the cache memory. When a new value must be installed into the cache, it is read from main memory and written to the word in the associative cache addressed by the victim register, and then the victim register is incremented to point to the next word, wrapping around when it gets to 1111...1. This is a good reason for having the size of the associative cache memory be exactly a power of 2.

Fig. 13.3.2 shows a miss that causes the value to be brought in from main memory. If any of the valid bits had been 0, the associative memory would have installed the new tag/value pair in that line and turned the valid bit to 1.
Since the associative cache is full, the victim register is consulted. Since it points to the second line, the tag/value pair of 24/916 is installed in that line, destroying what was there before. Afterwards, the victim register is incremented to 2. (Just like with other kinds of memories, the words of associative memories are addressed beginning with 0.)
[bookmark: #Fig13_3_1][image: https://brahe.canisius.edu/~meyer/253/BOOK/ch13/GIFs/Fig13_3_2.gif]
Fig. 13.3.2: A miss and subsequent victim selection
Quite often, more than one memory word is stored in one line of an associative memory to cut down on the overall size of the associative memory by reducing the number of tag bits that need to be stored. Cache lines usually hold 4, 8 or 16 bytes from main memory because most memories today are byte addressable and integers and real numbers are usually stored as multiples of 4 bytes.
If the lines in a cache are 4 bytes long, the bottom two bits are stripped off the address and what is left is compared to the tags in the cache. This saves several bits in the associative cache since the bottom two bits are implicit. Every miss results in a read of 4 bytes from main memory.

Fig. 13.3.3 shows an associative cache which stores 4-byte lines. All tags are multiples of 4 because the lower 2 bits are implicit. The tags are shown in decimal, though of course they would be stored in binary in the actual hardware.
[bookmark: #Fig13_3_2][image: https://brahe.canisius.edu/~meyer/253/BOOK/ch13/GIFs/Fig13_3_3.gif]
Fig. 13.3.3: Associative cache with 4-byte lines
[bookmark: #Fig13_3_3]Associative memories make good caches because any value from memory can be placed in any line of the cache, making the principle of locality work to its maximum benefit. The chief downside is the expense of the circuitry since extra gates are needed for comparing every line in the cache with the searched-for address in parallel.

Section 13.4
Watching associative caches work

To gain more insight into how associative caches work, let's watch them in action. We perform a simulation of a computer system and keep track of which cache line values are stored in. Snapshots of the cache form a cache movie.
In these examples, line sizes are one word long instead of the more realistic 4 or 8 bytes. As we trace the history of main memory addresses and their effect on the cache, we will ignore the actual data values and whether the operations are reads or writes.
Imagine that a machine language program generates a series of memory addresses as it fetches instructions and operands from memory. Here is the sequence of 38 addresses, shown in three columns for convenience:
 0 140 8
 4 8 132
 8 132 12
 124 12 156
 12 144 8
 128 8 132
 8 132 12
 132 12 160
 12 148 8
 136 8 132
 8 132 12
 132 12 164
 12 152
Just exactly what this program is doing doesn't matter. It is probably in some sort of a loop because certain addresses, such as 8 and 12, appear repeatedly. Other addresses are moving up by 4 in a fairly regular fashion, giving rise to the suspicion that this program is accessing consecutive elements of an array of 4-byte integers. Since 132 appears in the middle of this sequence repeatedly, and since it appears that the instructions are coming from smaller areas like 0, 4, 8, and 12, 132 is probably not an instruction and probably not part of the array, but rather another data variable like a sum or the minimum. But it is really not important that we know what the program is doing.

Now imagine that we have an 8-word associative cache. The first 6 addresses are all different and go into the cache in the order they appear and into lines 0 through 5:
[image: https://brahe.canisius.edu/~meyer/253/BOOK/ch13/INSERTs/GIFs/amcache1.gif]
The two blanks in lines 6 and 7 aren't really blank but the accompanying valid bits are 0 indicating the bit patterns in them aren't valid. The victim counter register is 6, indicating that 6 is the next line to be overwritten.
Question marks in the data column indicate that the data values from main memory not shown in these diagrams, because they are not important for now.
Now address 8 comes along, but it is already in line 2, so the cache isn't changed. However, because address 8 is already in the cache, main memory need not be consulted, so retrieving the memory cell 8's contents occurs in much less time.

Next 132 is added to line 6, 12 is found at line 4, and 136 is added at line 7:
[image: https://brahe.canisius.edu/~meyer/253/BOOK/ch13/INSERTs/GIFs/amcache2.gif]
Now 8, 132, and 12 come along and are all found in the cache. But when 140 appears, it is not in the cache, which is by now full. Since the victim counter has cycled around from 7 (1112) to 0 (0002), line 0 is overwritten.
[image: https://brahe.canisius.edu/~meyer/253/BOOK/ch13/INSERTs/GIFs/amcache3.gif]
144 overwrites line 1 and the next three addresses (8, 132, 12) are all found.

When 148 is accessed, a search of the cache reveals that it is not present so we add 148 to the cache at line 2, just as the victim counter tells us:
[image: https://brahe.canisius.edu/~meyer/253/BOOK/ch13/INSERTs/GIFs/amcache4.gif]
Examining the entire program shows that this is a very bad choice, since 8 will be called upon repeatedly, but 148 will never be accessed by this program again! However, the hardware doesn't know this, so it blindly obeys its hardware algorithm.
In fact, the very next address after 148 is 8 again, which was just displaced. 8 is reinstalled in the cache at line 3, dictated by the victim counter.
If the hardware could keep track of how frequently certain addresses were accessed, it would quickly discover that 8 and 12 and 132 are used repeatedly, and it would lock these into the cache somehow. While it might be possible to do this, the expanded circuit complexity would greatly increase the cost.

Running the algorithm to the end, to address 164, gives the following:
[image: https://brahe.canisius.edu/~meyer/253/BOOK/ch13/INSERTs/GIFs/amcache5.gif]
If you are tracing this algorithm by hand it might be easier to cross out the previous value in a line and write the new value next to it, as is done in the following picture of the entire program:
[image: https://brahe.canisius.edu/~meyer/253/BOOK/ch13/INSERTs/GIFs/amcache6.gif]
Finally, we can now calculate the efficiency of associative caches. There were 38 addresses generated by the program in the previous section. Of these, 18 required going out to main memory. We can find this out quickly by counting all the numbers written into the cache, including those now struck out. Thus, 18÷38 or 47% were missed. Another way of saying this is that 53% of all memory accesses were found in the cache. This is the hit ratio, while 47% or (100-53)% is the miss ratio. Though this is impressive for this small program, it is pretty dismal for a real program. Most systems try to get a 90% hit ratio, which is an easier average to achieve with a long running program and a larger cache.

Section 13.5
Direct-Mapped caches

To larger make caches, a cheaper method than associative caches must be found, which is how direct mapped caches arose.
Direct mapped caches are more like main memory than associative caches because they have addresses and they store words at definite addresses. A tag and valid bit is still stored along with each data value.
Instead of comparing every word against the searched-for address, as associative caches do using fancy hardware, the bottom N bits of this address are used as the cache address. Thus, each word of memory has exactly one and only one line in the cache that can hold it.
Fig. 13.5.1 shows a very small 4-word cache that holds the values from the 32-word memory.
[image: https://brahe.canisius.edu/~meyer/253/BOOK/ch13/GIFs/Fig13_5_1.gif]
Fig. 13.5.1: Small direct-mapped cache
4 MOD 4 = 0, so the value of address 4 (42) along with the address (4) is stored in location 0. Addresses 8, 12, 16, 20, 24, and 28 would also be stored there. The value at address 19 (90) must be stored in location 3 of the cache, since 19 MOD 4 = 3. (Recall that X MOD Y is the remainder of X/Y. 19÷4=4 with a remainder of 3.)
A programming technique used in high level languages similar to direct mapped caches is hashing. In order to avoid searching for values in a large array, a C program can take in the data value, transform it in some way (make "hash" out of it) and use that transformed value as the address. The function that transforms the data value into an address is called the hashing function. With direct mapped caches, this function is merely the modulus function MOD. Modulus of a power of 2 is particularly easy since it merely involves chopping off and throwing away the upper bits of a binary number.
Many different addresses map into the same cache addresses, which may cause problems. For example, if the cache memory is 1024 bytes long, the bottom ten bits are used as the cache line address. Any memory address ending with the same 10-bit pattern will map into the same cache line. Thus, 0 and 1024 and 2048 all map into the same slot or line in the cache, and 1, 1025 and 2049 all map into the same slot, and 2, 1026 and 2050 all map into the same slot and so forth.
The cache remembers where the data came from is by storing the upper bits of the address as the tag. In Fig. 13.5.1, the entire address was stored as the tag, but in most direct mapped caches, the address MOD (size of the cache) is what is stored. This would give 1, 0, 1 and 4 for the tag fields of Fig. 13.5.1 instead of 4, 1, 6 and 19.
Fig. 13.5.2 shows this by putting the tags in binary, not decimal.
[bookmark: #Fig13_5_1][image: https://brahe.canisius.edu/~meyer/253/BOOK/ch13/GIFs/Fig13_5_2.gif]
Fig. 13.5.2: The same 4-line cache showing how the memory addresses are stored
and how they are used to find the correct line of the cache
[bookmark: #Fig13_5_2]Direct mapped caches can be quite large, such as 8K, 16K, 64K or higher. Consecutive words from memory are bunched up in lines just as in associative caches, with the commonest line sizes being 4 or 8 bytes.

Section 13.6
Watching direct-mapped caches work

Now let's do the same type of simulation with direct-mapped caches. Suppose we have an 8-word cache and are running the same 38-instruction program on it. The word at address 0 goes into slot 0 because 0 MOD 8 is 0. Remember that the modulus operation is what is required to find out which slot an address maps into with direct mapped caches. 4 maps into 4, so the cache looks like the following after the first two instructions. Notice there is no victim counter register, because the slot to write into is determined by the address.
[image: https://brahe.canisius.edu/~meyer/253/BOOK/ch13/INSERTs/GIFs/dmcache1.gif]
All other slots are invalid currently. Next 8 comes along, but it also maps into slot 0 so it kicks out memory value 0. Similarly, 124, the fourth address generated by the program, maps into 4 because 124 MOD 8=4. The cache now looks like:
[image: https://brahe.canisius.edu/~meyer/253/BOOK/ch13/INSERTs/GIFs/dmcache2.gif]
If you have a bad feeling about where this is heading, your fears are justified! The fifth address generated, 12, maps into 4, overwriting 124. Though this is okay because 124 is never used again, but many of the other addresses are multiples of 4 which means they will map into either 0 or 4. Thus there will be no traffic into slots 1, 2, 3, 5, 6, and 7 and way too much traffic into 0 and 4.
The miss ratio of this cache for this particular program is unacceptably high. It is actually 100% which means the cache doesn't help at all, but is only a hindrance! Bumping up the line size of the cache to 4 or 8 bytes would help because the modulus would effectively go up to 12 or 16 and a much evener distribution would occur.
Direct-mapped caches suffer from regularities in patterns of address generation as we saw above. If the machine is byte addressable, this problem will show up as addresses frequently being multiples of 2 or 4, necessitating a longer line. If the machine is word addressable, not byte addressable, such as the CDC computers with their 60 bit words, we would see a lot better performance.
Here is the same 38-address program, only now the addresses have been divided by 4 to reflect a non-byte addressable machine which stores one integer in just one word, not 4 bytes:
 0 35 2
 1 2 33
 2 33 3
 31 3 39
 3 36 2
 32 2 33
 2 33 3
 33 3 40
 3 37 2
 34 2 33
 2 33 3
 33 3 41
 3 38

Following is the history of cache writings with older values crossed out so you can trace the progress:
[image: https://brahe.canisius.edu/~meyer/253/BOOK/ch13/INSERTs/GIFs/dmcache3.gif]
Since 17 values were written into the cache at some time or another, the miss ratio is 17÷38 or 45% (rounded up), which is better than the associative cache of the same size for the same program.
This same sequence of cache writings and the same hit ratio would be seen if the cache lines were 4 bytes instead of 1 for the original 38-address program, due to the fact that that original program was for a 4-byte machine.

Section 13.7
Set-associative caches

Direct mapped caches suffer from the problem that each address can be placed in only one slot of the cache, that slot whose cache address is the modulus of the memory address. We saw this plague us above when our machine was byte addressable and used 32-bit integers. Since direct mapped caches are much cheaper to make than associative caches, which do not suffer from the clustering effect, a mix the two types is used. Such caches are called set-associative caches.
A set-associative cache is basically a direct mapped cache where each slot holds several distinct lines. In other words, each slot is a tiny associative cache. The number of lines in each slot determines what kind of set-associative cache it is. Two lines give it the name 2-way set- associative, 4 lines would name it 4-way set-associative, and so on. Most real computers today use 2-way set associative caches.
Fig. 13.7.1 shows a 2-way set associative cache.
[image: https://brahe.canisius.edu/~meyer/253/BOOK/ch13/GIFs/Fig13_7_1.gif]
Fig. 13.7.1: 2-way set associative cache
Notice that each slot (represented by a horizontal slice through the cache) has room for two complete lines. The slot numbers are the addresses of the lines as if this were a direct-mapped cache. They correspond to the last m bits of memory addresses that will be stored in those slots, where m is the logarithm (base 2) of the number of slots.
Think of each slot as a 2-slot associative cache that is laid out horizontally rather than vertically, or visualize the 2-way set-associative cache as really a direct-mapped cache which can hold two tag/value pairs in each line.
If there are 8 slots in the cache, as in Fig. 13.7.1 above, then all addresses that are divisible by 8 will be stored in slot 0, either in line 1 or in line 2, depending upon which one is free. If neither is free, then a victim is selected. All addresses whose MOD 8 values are 1 will be stored in either line 1 or line 2 of slot 1, and so on. This is made clearer in Fig. 13.7.2.
[bookmark: #Fig13_7_1][image: https://brahe.canisius.edu/~meyer/253/BOOK/ch13/GIFs/Fig13_7_2.gif]
Fig. 13.7.2: Where addresses are mapped into;
The entire address is shown as the tag, not just the top bits.
[bookmark: #Fig13_7_2]Now we will simulate the same 38-address program on a 2-way set associative cache, only we will use the second version where the addresses have been divided by 4. The program's address history is reprinted below with the address MOD 8 in parentheses:
 0 (0) 35 (3) 2 (2)
 1 (1) 2 (2) 33 (1)
 2 (2) 33 (1) 3 (3)
 31 (7) 3 (3) 39 (7)
 3 (3) 36 (4) 2 (2)
 32 (0) 2 (2) 33 (1)
 2 (2) 33 (1) 3 (3)
 33 (1) 3 (3) 40 (0)
 3 (3) 37 (5) 2 (2)
 34 (2) 2 (2) 33 (1)
 2 (2) 33 (1) 3 (3)
 33 (1) 3 (3) 41 (1)
 3 (3) 38 (6)

After the first 5 addresses (0, 1, 2, 31 and 3) are installed, 32 comes along. Normally it would map into slot 0 because 32 MOD 8 is 0, displacing address 0 which is already there. But with a 2-way set associative cache, the new address would go into the second line of slot 0, not displacing 0:
[image: https://brahe.canisius.edu/~meyer/253/BOOK/ch13/INSERTs/GIFs/sacache1.gif]
When 33 comes along, it also maps into the second line of slot 1, not displacing the 1 that is already there.
[image: https://brahe.canisius.edu/~meyer/253/BOOK/ch13/INSERTs/GIFs/sacache2.gif]
Thus a set-associative cache forestalls the evil day when one of the values must be evicted to make room for an incoming address. For slot 1, this will not happen until the last address, 41, is generated. Since 41 also maps into 1, but slot 1 already has two full lines, one of them must be evicted. We choose the last value that was written, and overwrite the 1 in the first line.

After running the entire program, we get the following cache picture. Notice that both slots 0 and 1 evicted values, represented by the strikethroughs.
[image: https://brahe.canisius.edu/~meyer/253/BOOK/ch13/INSERTs/GIFs/sacache3.gif]
Since 15 values were written into the cache, the miss ratio is 15÷38 or 39%, giving a hit ratio of 61%. For most average programs and reasonable cache sizes, a set-associative cache gives the best performance of the three types we looked at, though there are other types.
There must be a victim selection algorithm for set associative caches, just as with associative caches. However, there are some different options available. For instance, there could be a single cache-wide victim counter that cycles through N values for an N-way set associative cache. For a 2-way cache, this would cycle between 0 and 1. Another possibility would be to have a victim counter associated with each slot that cycles between the N values. This would permit the cache to retain some values longer than a cache-wide victim register would, but it would add to the complexity, cost and bit size of the cache.

Section 13.8
Average Access Time

Just how much faster is a computer with caching? The hit ratio does not tell us directly how much faster it is, only that a certain (hopefully high) percentage of memory accesses can be satisfied out of the cache.
Suppose that it takes 70 nsec to get a value out of a cache and 700 nsec to get a value out of memory and that 85% is the hit ratio. This means 85 memory requests out of 100 can be satisfied from the cache without resorting to main memory. What is the average time it takes to read a value from the combined cache/memory of this system? We call this the average access time of the combined cache/memory system.
Obviously the average time to read is not 70 nsec because not all desired values are in the cache, and just as obviously it is not 700 nsec because some values are in the cache, not all in memory. So it must be somewhere in between. The answer is the weighted average:
[bookmark: _GoBack]70 * 0.85 + 700 * 0.15 which is 164.5 nsec.
Comparing 164.5 nsec to 700 nsec, the average time of the combined cache/memory system is much better than having a machine where every memory access required 700 nsec. In fact, a machine with a cache exhibiting these numbers would be 4.25 times faster than a machine with no cache (700÷164.5=4.25).
The formula for the average access time Tavg is:
Tavg = ch + m(1-h)

where c = time for one cache access, m = time for one memory access time, and h is the hit ratio. 1-h is the miss ratio.
There is a subtle issue here. The above formula assumes that the computer "knows" ahead of time whether it should go to cache or to main memory. This is unlikely, because it usually takes the same amount of time to read from the cache as it does to query it to find if a certain tag is there. Thus, the computer always reads from the cache first and only then it goes to main memory. The new formula is
Tavg = c + m(1-h)
For our example, this works out to be 70 + 700*.15 or 175 nsec, which is not much longer than 164.5 nsec.

Section 13.9
Efficiency of Associative Caches

Earlier we calculated the efficiency of various types of caches by determining how often a desired piece of data was in the cache. The fraction of time that it is found is called the hit ratio and many real computers strive to achieve a 90% ratio.
Two factors influence the hit ratio: the behavior of the program and the size of the cache. If the program were very well behaved, it would generate addresses so that the desired data would almost always be in the cache. This is unlikely, though it is equally unlikely that a program will access memory in a totally random manner, thereby eliminating the usefulness of the cache. Most programs are moderately well behaved.
Though the hardware designer has little control over what programs will be run on the hardware, the designer can change the size of the cache. Cache size is very important. If it is too large, then the cache is very expensive. But if the cache is too small, the miss ratio becomes too high. A high miss ratio means that the speed-up is eroded to the point where the cost of the extra hardware is not worth it.
As an experiment to see how the cache size impacts performance, try running the 38 address program of section 13.4 using first a 4-word associative cache, and then a 16-word cache. No cache entries will ever have to be overwritten for this program given a 16-word cache, and only 15 words will appear. This gives a hit ratio of (38-15)÷38 or 61%, which is better than 53% for the 8-word cache.
However, if each word of the cache costs $100, then the smaller cache would cost only $800 while the larger would cost $1600. Obviously, doubling the cache size doubles the price in this example, but it doesn't double the speed.
It isn't obvious that the speed of the system hasn't doubled merely by comparing the hit ratios. Let's plug the hit ratios into the second formula that computes average time of access from section 13.8, using 70 nsec for cache access speed and 700 nsec for main memory access speed:
70 + 700*(1-.53) = 399 nsec

70 + 700*(1-.61) = 343 nsec
Though 343 nsec is faster than 399 nsec, it is not twice as fast. In order to be twice as fast, the average access time would have to be one half as large, or only about 200 nsec.
The average access time of the combined cache/memory system is the performance of the system. The quotient resulting from dividing cost by performance is called the cost/performance ratio and we often try to maximize that, rather than pure performance (buy the fastest computer) or pure cost (buy the cheapest computer).
Fig. 13.9.1 is a graph plotting cost against speed.
[image: https://brahe.canisius.edu/~meyer/253/BOOK/ch13/GIFs/Fig13_9_1.gif]
Fig. 13.9.1: General relationship between speed and cost
[bookmark: #Fig13_9_1]The relationship is more or less linear for a while, until the really high speeds are achieved, whereupon the cost becomes exponential. The asymptote, the vertical line at the right end of the speed axis, indicates the current limit of technology -- it is physically impossible to build a computer faster than this at the present time. Over the years, this asymptote is shoved right. Someone buying a computer will not necessarily buy the fastest computer, but rather the one whose combination of speed and low cost meet their needs.
There are many factors that affect the performance of a virtual memory system. One is the ratio of the speeds of cache and main memory. In the example above, the cache is ten times faster. This may be more or less. If cache is slower, the hit ratio should be even higher to achieve good performance.
Another parameter is the program itself. While it would be possible to find the perfect balance between size (hence cost) and the miss ratio for a given program, this might not hold for the next program. Computer scientists run huge batches of simulations to determine, for an average mix of real programs, what the optimal size of the cache is for a given computer.
Speed is not everything, rather the balance between the cost of the computer and the speed required. Some companies do not need the speed of supercomputers to do their work, so they would settle for a slower but cheaper computer. Yet some applications require the fastest computers that can be made, such as scientific simulation experiments. One computer, the GF-11, worked solidly for 3 years to solve a problem in quantum mechanics. Two other applications that require incredible speed are cryptography, the cracking of enciphered messages, and graphics, such as used the movie industry to simulate reality in pictures. For these applications, cost is not as important as speed, so people are willing to pay top dollar. This is true of cutting-edge research projects and government funded enterprises.

Section 13.10
Writing strategies

Up to this point, we have glossed over differences between reads and writes. However, writes are problematical. When a program issues a write command to main memory, supplying the new value and the address where to store that value, it doesn't care what is already there. So it is rather ludicrous to search the cache. However, the value just written might be needed again soon, so it makes sense to install it in the cache as though it were just read instead of written. It might be the case that the address being written is already in the cache because it was read in previously.
Thus, what we need to do with memory writes is to search the cache to see if the address is already there, and if so, to change the associated value. If the address is not in the cache, then select a victim in the cache and install the new address/value pair. This also implies that when an address is evicted from cache due to insufficient space, the associated value must be written back to main memory in order to keep the new value.
If a certain address is read and written a lot, it will remain in cache, almost like an extra register. The nice thing about caches is that they are invisible to the assembler programmer, who does not have to rewrite the program to take advantage of the few registers in order to keep high-traffic items close to the ALU.
The memory scheme we discussed above only works if there is but one processor accessing the memory and if memory-mapped input/output is not used. With the rise of multiprocessor systems and continued use of memory-mapped I/O, this strategy, called delayed writeback, will not always work.
Two other writing strategies are common. Write-through copies the value back to main memory as well as installing it into the cache. This seems to defeat the benefits of caching since all main memory accesses are much more time-consuming than cache accesses. However, real programs are observed to write to memory infrequently. In fact, only about 30% of all memory accesses are writes while 70% are reads. By writing to main memory as soon as there is a change, the memory and cache are kept coherent, that is they agree on all values all the time. A delayed writeback cache is incoherent whenever the value for address X in cache differed from the value for address X in main memory.
The other strategy is write-around in which the cache is by-passed altogether. Caches are only used for reads in these kinds of systems. Again, everything is kept coherent except when if the address just written is also present in the cache. That cache entry must be invalidated so that a subsequent read will fetch the new, correct value from memory, rather than the old, stale version from the cache. Invalidating is done by turning off the valid bit.

Caching is a marvelous invention because it speeds up most programs in the traditional von Neumann computer while not incurring any new programming effort. An old "dusty deck" could be brushed off, read into a computer disk via a card reader (if you can still find one!) and run, yielding exactly the same answers, only faster.
Unlike virtual memory, caching does not let you do anything you couldn't do before. It doesn't extend the address range at all. It doesn't provide extra memory space, even though physically there is more memory, but it does speed things up considerably.

28

image5.gif
victim counter register| 5 |

image6.gif
victim counter register| 0|

image7.gif
victim counter register

image8.gif
victim counter register| 3 |

image9.gif
victim counter register

image10.gif
victim counter register| ... |

image11.gif

image12.gif
i in binar.

adde:
das

image13.gif

image14.gif

image15.gif

image16.gif

image17.gif

image18.gif

image19.gif

image20.gif

image21.gif

image1.gif

image2.gif

image3.gif
MAIN MEMORY

victim

image4.gif
[e] 100 [roo00011 1101111 roauanot oonoonan

01101111 10010000 | 00101111 so0ronot|

11010000 | goonoota | 1101111 0000000

|40 otonoono | reseenor connoson 111111t

