Section 20.1
The von Neumann Bottleneck

The very first computers in the 1940s were extremely expensive but they seemed lightning fast to the people who used them. For example, ENIAC, the first true electronic computer, used vacuum tubes to achieve speeds of 5000 additions per second. This was orders of magnitude faster than the electromechanical Mark I, capable of only 3 additions per second. While these numbers are laughable today, they were impressive to computing pioneers.
Computers got faster and smaller and cheaper and easier to use, so much so that fifty years after the unveiling of ENIAC in 1946, many people have a computer at home and most use one at work.
In 1998, both IBM and Silicon Graphics have announced computers that run in the teraflop range, capable of a trillion floating point operations every second. Pacific Blue, from IBM, claims a speed of 3.6 trillion operations per second while Mountain Blue, from SGI, runs the LINPACK benchmark programs at 1.6 trillion operations per second. Both machines are not general purpose computers and were developed to simulate atomic weapon detonations for the US Department of Defense.
Yet with all these fantastic advances, we still want more. We still need more. Faster computers would enable us to make significant economic and social gains, such as better medical imaging and diagnosis, testing of scientific hypotheses by simulation, smarter allocation of the world's resources, and foiling criminals by breaking their encryption codes. Scientists are still at the forefront of those clamoring for faster computers. A group of astrophysicists in Japan who are studying the motions of millions of stars in globular clusters are building a special-purpose petaflop computer capable of a quadrillion floating point operations per second.
The fundamental reason why faster computers elude us is the ultimate universal speed limit -- the speed of light. Though light seems to travel at the almost unbelievable speed of 186,252 miles per second, (or about 300 million meters per second) this isn't much when we are talking about nanoseconds. Light moves only 11 inches in one nanosecond, or one billionth of a second. A teraflop machine would see one instruction executed every 1 trillionth of a second, and light can only travel 0.012 inches in that amount of time, about one one-hundredth of an inch! All of the memory and all the processing elements would have to be on such short buses that the furthest any signal would ever have to travel is about one one-hundredth of an inch. Packing components into that small a space causes problems of heat dissipation. Even today some supercomputers generate so much heat that they must be immersed in a bath of liquid nitrogen to keep from melting down. Imagine a tiny CPU that is smaller than a sugar cube, surrounded by air conditioning machinery the size of a house!
But these problems persist only as long as we maintain John von Neumann's original model of a computer, which has the memory in a box at one end of a set of wires and the actual processing circuits in another box at the other end. Fig. 20.1.1 shows this design:
[image: https://brahe.canisius.edu/~meyer/253/BOOK/ch20/GIFs/Fig20_1_1.gif]
Fig. 20.1.1: von Neumann bottleneck;
everything must go between the two components over the bus
one value at a time
[bookmark: #Fig20_1_1]For each instruction, the processing circuits (the ALU and the control circuits that implement the computer's instructions) initiate at least one read from memory to get the instruction, and possibly several more. Another read might fetch the operands, and yet another might store results back to memory. All of these memory accesses slow the machine down, which is why alternatives have been introduced, which we studied earlier in this course: caching, pipelining and a large register set in the processor itself, and combinations of these and other methods.
Yet the machine still remains at heart a one-memory-access-at-a-time design, and the clash of this design with the speed of light is called the von Neumann bottleneck. To achieve a radical breakthrough in speed, we must abandon the von Neumann design altogether, which is the subject of this chapter.

Section 20.2
Multiprocessors

Instead of having only one ALU and only one control unit, why not have many? They are considerably cheaper and smaller now than in 1946. Also, memory is now cheaper and easier to fabricate in large chunks. But it is also cheaper to build in smaller chunks. Combine this new economic reality with networks, where millions of worldwide computers cooperate and share data, and you have the beginnings of a parallel computer design.
Actually, hardware designers have been thinking about parallel computers for a long time. Some early IBM computers had two CPUs so that more instructions could be done in the same amount of time. One CPU was devoted to the operating and the other ran user programs. CDC offloaded their operating system, NOS, onto ten peripheral processing units (PPUs) which were mini-CPUs so that the main number cruncher, optimized for scientific calculations, could run user programs almost all the time. Of course, multiprogrammed operating systems had introduced tiny processors many years before, using names such as channel computers or I/O controllers. In this chapter, we discuss designs that include more than one of the "big guys" which can do the full range of instructions and which are not dedicated to I/O or OS tasks.
Later, full scale multiprocessors were introduced, which are computers with more than one "central" processing unit. Commercial multiprocessor computers have 2 to 64 processing units. We sometimes call them CPUs, which is not quite right, or IUs (Instruction Units) or EUs (execution units.)

Each EU is hooked to the main bus, which is also connected to memory. Inside every EU is a complete set of registers, an instruction controller, ALU, and anything else that a full-blown CPU would have, including a private memory cache. Fig. 20.2.1 shows a simplified diagram of a multiprocessor:
[image: https://brahe.canisius.edu/~meyer/253/BOOK/ch20/GIFs/Fig20_2_1.gif]
Fig. 20.2.1: Multiprocessor
[bookmark: #Fig20_2_1]Software is the limiting factor. Both user programs and system software must be aware of the additional EUs in order to use them effectively. In the earliest systems, the main parts of the operating system were fixed in one of the EUs which parceled out work to the other EUs as user jobs needed to be done. Nowadays, symmetric operating systems have replaced this scheme with one where any EU can run any part of the operating system, as well as ordinary user programs, thus avoiding a bottleneck caused by relying upon one central master processor. The price to pay for this greater flexibility and higher degree of utilization is software complexity. Special locks must be used to ensure that only one EU at a time is modifying crucial data structures of the operating system.
Older software can be run on a multiprocessor system because it needs only one EU. Many companies buy a multiprocessor system so that their overall job throughput will increase, given the fact that the system is running many users' jobs at once. If only one processor existed, each program would have to wait until the processor became free, or the system would use multiprogramming to simulate each program having its own private processor. But in a multiprocessor several different programs can actually be running at the same time.
Yet this is not the breakthrough mentioned previously, the kind needed to achieve teraflop and petaflop performance. For scientific, medical and mathematical programs that need to run thousands or millions of times faster, a different scheme is needed, wherein the program itself is broken into thousands or millions of pieces, all of which run concurrently (at the same time).

Section 20.3
Flynn's Classification

In 1972, M. J. Flynn devised a taxonomy of parallel computers. Flynn looked at how many instruction streams and how many data streams there were in an application. An instruction stream is basically a program executing one instruction after another, while a data stream is a set of data values that are being operated upon. The traditional von Neumann computer has only one of both, so it is called SISD, or Single Instruction Single Data.
Here is the complete Flynn taxonomy:
[image: https://brahe.canisius.edu/~meyer/253/BOOK/ch20/GIFs/Fig20_3_1.gif]
Fig. 20.3.1: Flynn's taxonomy of parallel computers
[bookmark: #Fig20_3_1]One of the interesting things about Flynn's taxonomy, which was really meant to contrast SIMD, MIMD and traditional computers, is that it predicts a MISD computer. No one has built such a computer nor are they likely to, although some computer scientists consider a pipelined processor to be a MISD computer.

Section 20.4
SIMD computers

One of the first supercomputers to have multiple processors was the Illiac-IV, built at the University of Illinois around 1968 and used until 1981. It was a classic SIMD design since a single instruction was issued for multiple data streams, one per processor. Illiac-IV had 64 processors connected in a mesh so that each processor had a serial link connecting it with one of its four neighbors. In addition, a control unit was attached to a bus that in turn attached to each of the processors, as shown in Fig. 20.4.1:
[image: https://brahe.canisius.edu/~meyer/253/BOOK/ch20/GIFs/Fig20_4_1.gif]
Fig. 20.4.1: Illiac-IV block diagram showing mesh and control unit
[bookmark: #Fig20_4_1]The Illiac-IV wound up costing $31 million, which was four times the original estimate. Its many racks of circuit boards filled a room almost the size of a basketball court and it was notoriously hard to program because the system software was very primitive and expected user programs to do low-level tasks such as I/O.
Despite its primitiveness, the Illiac-IV embodied the structure of most SIMD computers: a bunch of EUs all carrying out the same instruction given them by a master control unit. A sequencer took a program from main memory and issued it to the control unit, which in turn sent out the instruction to all the EUs at the same time. They then did that instruction on the operands which they held in their own private local memories. How the data got into those memories and how it was taken out and stored on disk is another matter, often ignored by theoreticians, but an important problem nonetheless. But while the data was sitting in the local memories, the parallel program could operate on it very quickly.
Typical applications of SIMD systems include image processing where each EU holds either one pixel or one small part of the overall grid of pixels. Mathematical operations also make use of SIMD computers, such as matrix multiplication and inverses. Statistics also uses matrix operations a great deal. When biomedical researchers or plant breeders put in data of their subjects and the treatments they gave them, and "ask" the computer to determine if the treatments were indeed what caused the recorded changes in the specimens, they are usually inverting huge matrices.
It may seem very restrictive for every EU to do the same instruction as all the others. But most SIMD computers provide for a mask which is a way of letting some EUs ignore the current instruction coming from the control unit. Of course, they can't skip ahead in the program, so those that are "maksed" out for the current instruction perform a NOP while their neighbors do the instruction. The values of this mask may come from either the control unit itself or result as a condition of the data that is in the EU's local memory.

Section 20.5
Odd-Even Transposition Sorting

Just to get a sense of how SIMD computers work and what their speed-up is, let's investigate a parallel sorting algorithm. This algorithm illustrates both the lock-step control of the individual EUs and communication between neighbors.
To sort an array of n real numbers, a sorting algorithm could be used on a uniprocessor. Here's a C function to sort an array of doubles called array:
void sort (double array[], int n)
{
 int i, j;
 for (i=0; i<n; i++)
 for (j=0; j<n; j++)
 if (array[i] < array[j]) {
 double temp = array[i];
 array[i] = array[j];
 array[j] = temp;
 }
}
Fig. 20.5.1: C code to sort an array of doubles
To determine how long this will function will take, observe that the if statement which compares two element of the array is nested inside two for loops. The outer for loop executes n times, and the inner for executes n times for each execution of the outer loop. Thus, the if statement will be done n2 times. (There is a simple change to the bounds of the two for loops which will cut this time approximately in half, making it run n(n-1)/2 times, but that is not considered by theorists to be a significant improvement.)
The number of times that the inner if statement executes is thus related to the number of input values, which is called the problem size. This estimate of time required for the algorithm is called its time complexity and is a function of the problem size. By doubling the problem size, going to 2n elements, the time complexity more than doubles; it quadruples, since (2n)2 = 4n2. This is not good because as the size of the problem gets bigger and bigger, the amount of time required to run the algorithm gets bigger at a much faster rate.
Now we will illustrate the use of a parallel SIMD computer to sort n numbers. Each processor gets one number and each processor has its own integer id number starting at 1. Execution steps are given numbers, too, starting at 1, on up to n. After n execution steps, the numbers will be sorted, in that the smallest number will be found in processor 1, the second smallest in processor 2, and the largest in the last processor with id number n.
Here's how the algorithm works. During odd time steps, all processors with odd id numbers send their current value to their right neighbors, i.e. the processor with an id number that is one larger. Thus processor 1 would send its value to processor 2, and processor 3 would send its to number 4. The even numbered processors receive these values, compare them to what they currently hold in their private memory, and send the smaller of the two values back to the odd numbered neighbor. During even time steps, the even numbered processors send their values to their odd numbered neighbors, except the first and the last processors which stay idle. There must be an even number of processors, hence an even number of values.
Below is a diagram of the algorithm in progress, showing the value in each processor at the beginning of each time step:
[bookmark: #Fig20_5_1][image: https://brahe.canisius.edu/~meyer/253/BOOK/ch20/GIFs/Fig20_5_2.gif]
Fig. 20.5.2: Odd-even parallel transposition sort;
The circles are processors holding one value.
The integers above the circles are id numbers of the processors.
Let's take a look at how this actually works in a SIMD machine.
Each processor has basic instructions for arithmetic and copying values from one register or memory cell to another. There are also SEND and RECEIVE instructions which allow a processor to communicate with its neighbor. For example:
SEND a left
would send the value in memory location a to the processor that is directly "to the left" of this processor, and t := RECEIVE right would get the value that is waiting on the wire coming from the processor to the right of this one and store it into t. We will assume that the processors are numbered so that 2's left neighbor is 1 and its right neighbor is 3.

The central controller executes the program in Fig. 20.5.3. The body of the for loop consists of instructions, marked by #, that the controller doesn't directly execute itself but rather sends to all of the EUs in the system, which then do the instruction relative to themselves. Each processor has the following local variables:
x current value of the list to be sorted
id its own private id number
time current execution step
temp temporary value

for (i=0; i<n-1; i++) {
 #if (time % 2 == 1) {
 # if (id % 2 == 1) {
 # send right x;
 # x = receive right;
 # }
 # else {
 # temp = receive left;
 # if (temp > x) {
 # send left x;
 # x = temp;
 # }
 # else
 # send left temp;
 # }
 #}
 #else {
 # if (id != 1 && id != n) {
 # if (id % 2 == 0) {
 # send right x;
 # x = receive right;
 # }
 # else {
 # temp = receive left;
 # if (temp > x) {
 # send left x;
 # x = temp;
 # }
 # else
 # send left temp;
 # }
 # }
 #}
 #time++;
}
[bookmark: #Fig20_5_2]Fig. 20.5.3: C-like code for parallel odd-even transposition sorting algorithm;
statements with # in front are sent to individual EUs for local execution
[bookmark: #Fig20_5_3]Each of the #-labeled lines in the program represents machine instructions that are done within the context of an individual EU, which has its own values for id, x and temp. At the end of the algorithm, the resulting sorted list of numbers will be found throughout the EUs. Eventually, the controller collects the individual numbers by sending READ instructions to each EU and each EU then sends the values to the controller so it can store them into main memory. Alternatively, each EU could be hooked to the main memory bus and send its x value to a pre-specified memory word by the controller at the execution of a single STORE instruction.
The time complexity of this algorithm is n-1 since this is the number of steps that must be done in the worst case to sort all n values. The best sorting algorithms have a time complexity of nlog2n which is pretty good since log2n is a function that grows quite slowly. Dumb sorting algorithms, like the one shown in Fig. 20.5.1, have a time complexity of n2. Though nlog2n is a good, slow-growing function, a time complexity of n is obviously better. (Theoreticians consider a complexity function of n-1 to be identical to n, since these two values are almost identical as n gets very large.) For a billion numbers, nlog2n is about 31 billion, which is a lot larger than one billion.
Naturally, there is a trade off and that is the hardware cost. Having a billion processors to sort would cost way too much. There are ways to adapt this algorithm so that each processor stores more than one value, although this greatly changes and complicates the algorithm. But in general, parallel algorithms trade time for hardware. If you've got the silicon, we've got the time!

Section 20.6
MIMD Computers

SIMD computers break a program into a number of identical subtasks while MIMD computers are best suited to programs that break into many different subtasks, often working on different parts of the overall data.
Before we examine MIMD algorithms, let's discuss the actual physical structure of MIMD computers. There are only two main ways to connect autonomous processors (EUs or CPUs): by a common bus or directly with wires between each of them. Both of these structures have already been presented: the common bus in Fig. 20.2.1 and the direct connection in Fig. 20.4.1 showing the Illiac mesh. Hybrids are possible including more than one common bus or combining buses and direct connections.
All MIMD computers utilize some form of this range of hardware connection possibilities. The real difference between SIMD and MIMD is the level of autonomy in each EU. SIMD computers broadcast the same instruction to each EU while MIMD EU's autonomously run their own programs.
Now on to MIMD algorithms. Pipelined algorithms are common: one large problem is broken down into several distinct substeps or stages and put onto a hardware system where each stage gets its own processor. Intermediate results are communicated between the processors, either through a common memory or by sending explicit messages through communication channels. In contrast to the smaller instruction pipelines introduced in Chapter 15, these pipelines are coarse-grained, meaning that the program is broken into large pieces, each of which requires thousands or millions of instructions to do. Instruction pipelines are called fine-grained because the algorithms are broken into a great many very small pieces like tiny grains of sand.

An example of a coarse-grained parallel application that can make use of a MIMD parallel computer is high level language compiling. There are at least four modules to a compiler, each one doing part of the overall task of translating a high level program into a machine language program. The modules can be assigned to stages of a pipeline, each of which produces an intermediate form of data which is sent to the next stage for further processing:
1. Lexical analyzer -- also called tokenization, because it breaks the input stream of characters into larger meaningful units called tokens. A single number or an identifier or the ++ operator are all tokens. OUTPUT: stream of tokens.
2. Parser -- this uses a context-free grammar to determine that the tokens follow the syntax rules. OUTPUT: a syntax-tree which shows the relationship between the tokens in a form that the computer can more conveniently deal with.
3. Code generator -- turns the abstract "commands" which are embedded in the tree into machine language commands such as JUMP, ADD, MULF2 etc. OUTPUT: machine language instructions
4. Optimizer -- examines the instructions and looks for inefficient sequences that can be replaced by shorter or faster sequences of instructions. OUTPUT: better quality machine language instructions.
This kind of application can use a parallel MIMD computer because the stages can overlap. Though it would be possible to completely tokenize the input file and then completely parse it, and then generate all the code, and then optimize that code, in four long-running steps, it is not necessary because the stages can overlap to a great extent. While the parser is deciding how the current token fits into the scheme of the program, the lexical analyzer can be reading the input and constructing the next token, and the code generator can be working on the part of the syntax tree that has already been constructed.

Section 20.7
Communication in parallel computers

Communication is a crucial issue in any parallel computer. There are two main paradigms or models of communication, which influence both the software in terms of programming languages and the hardware in terms of implementable designs:
1. Message Passing -- processors send discrete chunks of information, called packets, to each other. Each packet is one logical message.
2. Shared Memory -- processors communicate indirectly by reading from and writing to the same physical memory.
There are advantages and disadvantages to both. Message passing is often used when there are lots of little processors which are communicating to their neighbors frequently and regularly. The parallel sorting example is a perfect example. Another term that describes the processors is tightly-coupled, which means they are not very independent, and must respond to their neighbors each instruction cycle. Individual wires connect the processors in order to swiftly transmit messages. Message passing can also be simulated on computers that only have shared memory.
Shared memory is often used in loosely-coupled systems, where the processors do larger, longer-running tasks and communicate with each other infrequently. The messages may be irregular in length or content, as in the compiler pipeline. Furthermore, the pattern of connections between processors may vary dynamically, meaning that processor A may communicate with any other processor at various times. SIMD computers, by contrast, work well with algorithms in which communicate seldom if ever changes: processor A only talks to its direct neighbors, and not to any others.
Sharing memory has an inherent hardware drawback, namely that the common bus over which all the data travels must be very fast if the processors communicate often. Otherwise, the system will saturate quickly as the number of EUs increase. For this reason, most shared memory systems limit the number of processors, usually about 64, and work best with algorithms in which inter-processor communication occupies only a very small fraction of an algorithm's total time, preferably less than 5%.
Simulating shared memory on systems that only have direct wires between the processors is much more difficult than simulating message passing with shared memory. However, it is sometimes done because most parallel computer systems run a variety of programs and even a single program may have sections that follow several different communications paradigms. Some software models, such as Linda, pretend there is one very large central memory even though in reality the individual memory words are spread out over many separate processors. In Linda the elements of this memory are called tuples and the memory is called tuple space.

Section 20.8
Hardware Configurations

Let's back up and focus on hardware again, specifically how we can connect the components (memory units and processors) of a parallel system together, such as memory and the various processors.
The two types of components are memory units (MUs) and processors or execution units (EUs). There are two main ways of connecting these:
1. The EUs share one large memory on a single bus.
2. The EUs each have their own local memory and are connected to each other.
In the case of SIMD computers, there may also be a need to connect each processor to a large central controller in order to do I/O or to issue instructions. Thus, most real systems are hybrids between the extremes.
Processors are connected together in order to communicate. There are many different possibilities for connecting them. A particular way of connecting is called the topology of the system, meaning its shape.
Let us first consider connecting processors together. The two-dimensional mesh of the Illiac-IV was only one possible topology. Fig. 20.8.1 illustrates several other topologies.
[image: https://brahe.canisius.edu/~meyer/253/BOOK/ch20/GIFs/Fig20_8_1.gif]
Fig. 20.8.1: Interconnection topologies
In Fig. 20.8.1(a) there are several EUs connected in a line, while (b) shows the end EUs of the line joined so as to make a circle or ring. (c) is called a star network because it looks like the rays of light from a star. (d) is a fully connected network; every EU has a direct wire to every other EU, which is not true of any of the other topologies. (e) is a mesh, which is a generalization of the single line. The generalization of the ring is a torus, shown in Fig. 20.8.2. (e) is an irregular mesh.
All of these configurations have their good and bad points. Some are great for particular algorithms but horrible for others. The fully connected network is probably an ideal, but it is too expensive, since almost n2/2 wires are required to hook together n processors. Other topologies are cheaper but not as fast since data moving from one EU to another may have to travel through many intermediate nodes.
Unlike real-world large area networks, which often employ irregular topologies, parallel computers almost never do, since the number of processors is initially fixed and the interconnections can be made regular and rational, unfettered by constraints of geography or population. The two-dimensional mesh is a common configuration as is a toroidal mesh or simply a torus in which the end-row processors and end-column processors are connected, thus forming a doughnut. The Illiac IV used this topology.
Fig. 20.8.2 shows how a 2-dimensional grid of processors can be rolled up and connected along two edges, and then twisted around into a doughnut so the other two ends can be connected.
[bookmark: #Fig20_8_1][image: https://brahe.canisius.edu/~meyer/253/BOOK/ch20/GIFs/Fig20_8_2.gif]
Fig. 20.8.2: A torus (doughnut shape) of processors
[bookmark: #Fig20_8_2]The distance between any two EUs in a parallel processor interconnection topology is how many hops a packet would have to make when moving from one EU to the other. Since some EUs are closer together than others so computer scientists measure the size of the topology by finding the maximum distance between any two EUs and also the average distance. These distance measures have a major effect on the time complexity of parallel algorithms, since processors occasionally share data with distant processors instead of their immediate neighbors. In the case of a chain of n processors, the furthest processor is n-1 hops away.
If the processors are connected in a ring, the maximum distance is n/2. For a non-torus mesh of n processors, the distance is √n assuming that n is a perfect square.
A fully connected topology has a maximum distance of 1 since there is a line between each and every processor. Not only does this require about n2 wires (actually n(n-1)/2 wires) but it requires that each processor have that many communications ports. Each port requires a register to save the incoming value until the processor is ready for it, so if n is very large, the processor would use up all of its chip space for these ports. This topology does not scale up well, which means that if a larger version of the same design is required, the cost becomes prohibitive.

Section 20.9
Hypercubes

A compromise topology is the hypercube, in which each of the n processors has log2n connections to neighbors. Many parallel computers, including the Connection Machine, have used the hypercube model. Remember from mathematics that as n gets very large, log2n gets large, too, but much more slowly, since it is the exponent of the base (2) that gives n. If n is 65536 (the maximum number of individual processors in a Connection Machine), then log25536 is 16. Doubling the size of this computer would add only one more port to each processor. Furthermore, the maximum distance between any two processors is log2n. If the 65536 processors were arranged in a 2-dimensional grid, then the maximum distance would be 2×√65536, which is 2×256, or 512. Doubling to 131072 gives us 2×362 or 730 as the new maximum distance. This is not as bad as doubling 512, but it is certainly more than adding 1 to 512, getting 513.
A recursive way to construct a hypercube of size n is to construct two hypercubes of dimension n-1 and connect the corresponding points. A 1-dimensional hypercube has no wires and serves as the base case. Corresponding points in another hypercube are those points that spatially line up with the points in the other hypercube when they are aligned in the same direction. Fig. 20.9.1 shows this process for hypercubes of dimension 0 to 3.
[image: https://brahe.canisius.edu/~meyer/253/BOOK/ch20/GIFs/Fig20_9_1.gif]
Fig. 20.9.1: Hypercubes of size 0, 1, 2, and 3

Fig. 20.9.2 shows a 4-dimensional hypercube which is a bit harder to visualize since we are now taking two solid figures and lining them up and connecting points.
[bookmark: #Fig20_9_1][image: https://brahe.canisius.edu/~meyer/253/BOOK/ch20/GIFs/Fig20_9_2.gif]
Fig. 20.9.2: Hypercube of size 4
The number of nodes in a hypercube is 2 raised to the dimension of the cube. Thus, a 3-dimensional cube has 23 or 8 nodes.
To get from a node to any other node requires a number of hops which is equal to the dimension of the hypercube. Thus, in a 3-dimensional hypercube, a message would only have to go over at most 3 wires to get to any other node.
Each node has n wires coming out of it where n is the number of dimensions in the hypercube. This makes it seem like there would be 3×8 or 24 wires in a 3-dimensional cube. But each wire touches two nodes so we must count that wire only once. Thus, we divide the product by 2.
This gives us the following formula for computing the total number of wires in a hypercube of dimension n:
#wires = n × 2n ÷ 2 (n=number of nodes)
Routing is the method by which messages are sent to their destination. Each EU in a parallel computer has an address which is a binary number. Messages are sent to an EU by specifying its binary address in the header of the message. Intermediate nodes in the parallel computer examine the header and decide if the message is for them; if not, they forward the message to another node.
Technically, the points in a hypercube are nodes, as distinct from EUs. Many parallel computers, specially message passing ones like Hypercubes, need extra circuitry and logic to perform the network routing function. By separating the message system from the EU, the part that actually executes instructions, messages flow through the system without disturbing computations.
A picture will elucidate the structure of a node in a message passing parallel computer, as shown in Fig. 20.9.3. There is an EU which does the actual execution of machine instructions. It contains the ALU and registers and the control (or microcode engine).
[bookmark: #Fig20_9_2][image: https://brahe.canisius.edu/~meyer/253/BOOK/ch20/GIFs/Fig20_9_3.gif]
Fig. 20.9.3: Structure of a node in a parallel message passing computer
A small local memory is attached to the EU, ranging from a few kilobytes up to one megabyte or more. There may also be a smaller cache inside the EU, or the local memory may act as the cache. Another model is to think of all the many local memories as comprising the sum total of the parallel computer's main memory, in which case the memory is truly distributed as is the processing.
And finally there is the message routing circuitry which accepts incoming messages from ports and forwards them if they are not intended for this node. But if they are addressed to this node, then the message router places them in memory and interrupts the EU to signal it that a message is waiting. Some message routers maintain a queue of pending messages for the EU and wait for the EU to inspect the queue between computations.
In a hypercube, the nodes are numbered so that routing is very easy. Since the number of nodes is a power of 2, reflecting the dimensionality of the cube, all that a router has to do is to examine a certain bit of the address number and make a binary decision of whether to keep or pass along the message.

Fig. 20.9.4 shows 3-dimensional hypercube as two "boxes" laid side by side instead of the more familiar three-dimensional view. Each node has a binary address that is 3 bits long.
[bookmark: #Fig20_9_3][image: https://brahe.canisius.edu/~meyer/253/BOOK/ch20/GIFs/Fig20_9_4.gif]
Fig. 20.9.4: 3-dimensional Hypercube with addresses of nodes
[bookmark: #Fig20_9_4]The larger 0's and 1's are used to label entire sub-hypercubes. The left "box" is labeled 0, while the right one is labeled 1. The first bit in the address of each node reflects which of these major boxes it is in. Then inside each box, the "top" pair of nodes is labeled 0 and the bottom pair is labeled 1. The second bit in the address of each node contains these values. Finally, each pair of nodes (looking horizontally) forms a hypercube of dimension 1 and the left one is labeled with the value 0 while the right is given the value 1 in the third bit. Also, the two large boxes are identical, except for the first bit which identifies it as being in the left box or the right box, a relic of the recursive nature of the definition of a hypercube.
When a node generates a message it prepends the destination's address. Let's say that node 010 wants to send something to node 101. There are two ways to route, depending upon whether the routers read the binary address right to left or left to right. Let's go with left to right. The first bit of the destination is 1, which designates the other major box, so the router sends this message to its counterpart in the other major box. A node's counterpart node is one whose address is identical to its own except for the first bit. In this case, the counterpart of 010 is 110 and there is a direct wire between them. After the message arrives at 110's router, the router looks at the second bit of the destination. If it is different from its own, which it is, then it sends the message to its counterpart relative to the second level. Thus, 100 gets the message next. Finally, node 100 compares the third bit to its own and since they are different, it sends the message to its counterpart relative to the third level, which is 101.
In order to make it easier to "find" the correct bit to compare at each stage, the hypercube router rotates the destination address so that the current bit to compare is always the first.
If the destination were 001, instead of 101, node 010 would keep the message after examining the first bit, since both addresses have 0 in the first. Then at the second time step, the second bit is found to differ, so node 010 would send it to its counterpart at the second level, which is 000, and then 000 would send it to 001 at the third jump.
Taking the exclusive OR (represented by @) of the source address and the destination address and counting the 1s in the result tells how many wires (or hops) the message must travel to go from the source node to the destination node. If 010 is the source and 101 is the destination, 010 @ 101 = 111, so there are three wires to traverse. But 010 @ 001 = 011 so only two wires must be traversed. This works because the exclusive or is 1 only if the two bits differ, and if the bits differ the node must pass along the message, rather than keep it.
The hypercube topology has been extensively studied and implemented in actual computers, including the NCUBE and the Connection Machine. The properties of the hypercube and its performance characteristics are well-known. Alternatives have been developed such as the omega network and the Banyan network that make different trade-offs and outperform the hypercube in certain applications. The literature on interconnection networks is very rich.
Conclusion
Breaking out of the von Neumann model is necessary to achieve new breakthroughs in speed and processing capability. Adding parallelism to computers is one way to do this. Biology hints that information processing in animals and people uses massive parallelism and duplicate circuitry, both to increase speed and to ensure fault tolerance in case part of the circuitry fails. Though computer scientists and computer manufacturers have been working on designing and building parallel computers for almost four decades, parallel computers are still in their infancy. Software has proved to be the biggest bottleneck and large parallel computers like the Illiac-IV are enormously difficult to program and debug.
In the last nine years, a new trend has emerged, Clusters and Grid computing. With the incredible decline of computing prices and the huge jump in networking speeds, many researchers and industries are now hooking together tens, hundreds and thousands of small computers to form effective supercomputers. In 1994, some computer scientists at NASA put together the first Beowulf cluster, a tiny network of 16 personal computers and a high speed network router. These computers all ran Linux and used special libraries to allow C programs to distribute the computations. MPI is the most popular of these libraries. Many other people copied their original idea and now even student clubs have built Beowulf clusters, which are also sold commercially, sometimes with thousands of computers.
Since there is no fundamental difference between a network of separate computers, and a multiprocessor supercomputer, except for the speed of the interconnections, clusters have effectively replaced commercial supercomputers in about 90% of their former market. Only major government labs and a few top level research centers use what could be described as true supercomputers. The line, however, is quite blurred. More information about the world's largest computers can be found at www.top500.org. A Linux cluster containing 2304 computers, installed at Lawrence Livermore National Laboratory, is rated as the third faster computer in the world.
Many other trends are also making supercomputing easy, or at least widespread. Ad hoc temporary conglomerations of sometimes millions of PCs work on many problems, such as deciphering signals from outer space or folding proteins. With supercomputing now available to almost anybody and the blurring of the line between single computer, multicomputer and network, interesting challenges and opportunities have arisen, making it an exciting time to be a computer scientist!

Section 20.10
Cluster Computers

In the last decade an alternative to expensive, name-brand supercomputers has arisen -- cluster computers. With the precipitous decline of chip prices and the steady exponential increase in networking speeds, researchers and industries are now hooking together tens, hundreds and thousands of small computers to form what amounts to supercomputers.
In 1994, some computer scientists at NASA put together the first Beowulf cluster, a tiny network of 16 personal computers and a high speed network router. The computers all ran Linux and used special libraries to allow C programs to distribute the computations. The most popular of these libraries, MPI, has become a standard.
Many others copied their original idea and now even students have built Beowulf clusters, which are also sold commercially, sometimes with thousands of processors.
Though there are some differences between traditional supercomputers, whose architecture is called multicomputer, from cluster computers, the cost to speed tradeoff is so dramatic that clusters have effectively replaced commercial supercomputers. Only major government labs and a few top level research centers use what could be described as true supercomputers.
The line between true supercomputers and do-it-yourself clusters, however, is blurred. Very large clusters have been built for heavy science and are listed on the website www.top500.org. One of these, a cluster, called Thunder, contains 1024 four-processor Itanium 2 servers and is installed at Lawrence Livermore National Laboratory. Its operating system is Linux, like most Beowful clusters, and it can churn through almost 20 trillion operators per second.
Currently the fastest supercomputer is the Japan Earth Simulator which can run climate simulations at a sustained rate of almost 40 teraflops, or 40 trillion floating point (real number) calculations every second!
The actual structure of clusters is fairly simple. A homogeneous cluster consists of identical computers, running the same operating system (usually Linux) and having the same size of processor and hard disk. They are called baby nodes and have network wires to a router.
The router is a special purpose computer whose only function is to deliver packets from one computer to another. Providing a data pipeline of a guaranteed size (speed) between anytwo computers, usually 100 Megabits per second, the router must be very fast and able to read the packet headers very quickly. The total throughput of a typical router is usually well over 2 Gigabits per second.
There is one special computer called the head node, which is often identical to the baby nodes but doesn't have to be. The head node is connected to the rest of the world via a regular network connection and is where the programs are started. A user logs on to the head node and initiates compiled C or FORTRAN programs, which then sends work to the baby nodes, collecting their results when done. The head node and all the baby nodes talk through the router.
In the following figure, this arrangement is crudely diagramed:
[image: https://brahe.canisius.edu/~meyer/253/BOOK/ch20/GIFs/Fig20_10_1.gif]
Fig. 20.10.1: Logical configuration of Cluster computer
Cluster computers never share memory but they do send messages. Each component in a cluster computer is truly a separate computer, more than even a MIMD configuration. Each component computer, i.e. baby node, has its own processor, memory, hard disk, diskette drive, system bus and network interface card. In fact, almost any student could build a cluster computer in their house if they had enough room and spare parts. However, the router is the key to getting the cluster to work well and it is often the single most expensive piece. Routers are often purchased from special computers that specialize in them, like Cisco systems.
By contrast a multicomputer has some tighter form of memory integration. Either all or some parts of the memory available to programs is shared over a common memory bus. In a cluster, no memory is shared. It is impossible to issue a memory read on one baby node and access the data in the memory of another baby node.
However, some parts of the file system are usually shared by using NFS (Network File System) which is included with Linux. The baby nodes have their own swap space on a local hard drive but user accounts and data files are all kept on the head node. When a baby node opens a file, network messages are sent to the head node and data passes back and forth, but the only hard disk copy is on the head node. Many non-cluster computers use NFS to share files.
As always, the key to getting real work done, and faster, on any kind of parallel computer is the software. Since the nodes only send messages to each other through the router, they use the standard networking protocol TCP/IP.
Computer scientists have created a library of subroutines that call the raw TCP/IP software. These subroutines are called by user programs written in C, C++ and FORTRAN, and now other languages such as Java. MPI is the most famous of these libraries.
MPI, which stands for Message Passing Interface, consists of hundreds of subroutines (called functions in C). These subroutines handle a dazzling variety of communication tasks and provide many options to the programmer. All of them begin with MPI_ and follow C conventions. Anytime an MPI function returns information, it uses a pointer to alter a variable in the caller program.

Following is a simple C program that implements a parallel Hello world program:
#include <mpi.h>
#include <stdio.h>
#include <string.h>

int main(int argc, char **argv) {
 int rank, size, partner;
 int namelen;
 char name[MPI_MAX_PROCESSOR_NAME];
 char greeting[sizeof(name)+100];

 MPI_Init(&argc, &argv);

 MPI_Comm_size(MPI_COMM_WORLD, &size);
 // how many processors are there?
 MPI_Comm_rank(MPI_COMM_WORLD, &rank); // Which one am I?
 MPI_Get_processor_name(name, &namelen); // Where am I running?

 sprintf (greeting, "Hello world: rank %d of %d running on %s.\n",
 rank, size, name);

 if (rank == 0) {
 fputs(greeting, stdout);
 for (partner = 1; partner < size; partner++) {
 MPI_Status stat;
 MPI_Recv(greeting, sizeof(greeting), MPI_BYTE,
 partner, 1, MPI_COMM_WORLD, &stat);
 fputs(greeting, stdout);
 }
 }
 else {
 MPI_Send(greeting, strlen(greeting)+1, MPI_BYTE, 0, 1,
 MPI_COMM_WORLD);
 }

 MPI_Finalize();
 exit(0);
}
This is an ordinary C program until the line
 MPI_Init(&argc, &argv);
is executed. MPI_Init initializes the MPI routines so that the nodes can start sending messages. MPI_Finalize closes down the network connections.
Each MPI program uses several means to grouping messages and nodes together. The basic group is called a communicator and each node in a communicator has an id number, called its rank. The head node has a rank of 0. The first baby node is rank 1, and so on. The function MPI_Comm_rank gets the rank:
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
In this call, MPI_COMM_WORLD is a constant that stands for all nodes in this cluster. It is the default communicator. rank is an integer variable. By putting an ampersand in front of it, C makes this a changeable parameter, meaning that any changes the function makes to its corresponding parameter will affect the value in the variable rank. (Technically, &rank creates a pointer to the variable rank and it is through this pointer that the function MPI_Comm_rank changes the value.)
Cluster computers running libraries like MPI are often called SPMD, in contrast to SIMD or MIMD. SPMD stands for "Single Program, Multiple Data" and embodies the idea that there is one program but each processor has its own local memory. Unlike SIMD, where each processor does the same machine instruction, SPMD computers share the same program, but may be in different parts of the program.
In the above hello program, the if statement illustrates how the rank of the computer causes different parts of the program to activate. The first part, doing the fputs (which prints out the greeting variable to standard output) is executed only on the head node, whose rank is 0:
 if (rank == 0) {
 fputs(greeting, stdout);
 ...
 }
 else {
 ...
 }
In truth, SPMD is really a form of MIMD. The fact that every cluster program starts out as one program that has node-specific sections is what gives rise to the name.
In the hello program, the baby nodes, whose ranks are 1 on up, create a greeting line and send it to the head node, using MPI_Send:
 MPI_Send(greeting, strlen(greeting)+1, MPI_BYTE, 0, 1, MPI_COMM_WORLD);

(For a complete explanation of all the parameters, consult a book on MPI programming or visit the official MPI website at its home at Argonne National Laboratory:
http://www-unix.mcs.anl.gov/mpi
The head node receives messages by executing:
 MPI_Recv(greeting, sizeof(greeting), MPI_BYTE,
 partner, 1, MPI_COMM_WORLD, &stat);

The variable greeting is a character array and holds the message that is being sent by the baby node. stat is an integer variable that gets the resulting status code. Both greeting and stat are really changeable parameters, but stat needs an ampersand in front while greeting does not. This is due to the fact that in C all arrays are passed as pointers to the actual arrays, whereas integers are passed by copying their values into temporary integers. So arrays already are passed as pointers but you have to explicit pass a pointer to an integer if you want it to act as a changeable parameter.
The simplicity of the hello program hides a host of issues. For example, when the head node executes MPI_Recv, it blocks, i.e. waits indefinitely, until a message arrives. MPI has a non-blocking receive as well.
It is also possible to identify certain nodes as being the ones the head node wishes to hear from, temporarily ignoring all the rest. This is done with tags.
Nodes can call MPI_Bcast to broadcast a message to every other nodes. There is a scatter function which takes an array and sends each element to a baby node, and gather to collect them back and place them in an array. Reduce not only gathers but does an additional operation, specified as a parameter, such as adding them all up.
Synchronization functions are used to coordinate the activities of all the nodes. One commonly used synchronization function is MPI_Barrier which tells all the nodes in the communicator to finish whatever they have to do up to the point they call MPI_Barrier and then wait for all the others to "check in." Only when every node has reached the barrier point and checked in does the program continue.
The types of problems that cluster computers handle well are called embarrassingly parallel, which means that the problem to be solved is coarse-grained and there is little to no communication between replications of the same basic chunk of work.
As an example, consider a climate prediction program where a set of parameters determines how the climate will change. Suppose that the level of carbon dioxide in the atmosphere continues to grow at 1% per year. How will this affect the melting of glaciers and the trapping of heat in the atmosphere? Running the simulation on a model of earth would require trillions of computations. After perhaps one hour, the program would predict that in 100 years the sea level will rise 2 meters.
But scientists would also like to know what happens if the carbon dioxide growth rate is 1.5%, 2%, 4%, and so forth. They would also like to check out 0%, or even negative growth rates. In every case, the same vast number of calculations has to be redone, only with slightly different values of the variables. Of course, what starts out as a small difference in the parameters could quickly grow to a large difference in outcomes, which is why the full simulation has to be redone.
Since rerunning the entire simulation with each different value of CO2 is embarrassingly easy and requires no reprogramming, it is ideal for a cluster computer. Each baby node can get a parameter setting and can rerun the simulation. If there are N baby nodes and M different values of the parameter, where M > N, then the baby nodes will have to run multiple simulations, one after the other.
Cluster computers can do more, however. Each baby node could represent one cubic mile of Earth's atmosphere or a cubic mile of Earth's core, and a simulation could proceed with each baby carrying on a part of the simulation while all the other babies do likewise on their own particular chunk. In this case, however, the babies will have to communicate the values at their "edges" in order for the simulation to be accurate.
In the following picture, four babies simulate the atmosphere broken into 16 chunks. All babies get their own different value of CO2 growth, but otherwise perform the same program at the same time as all the others:
[bookmark: #Fig20_10_1][image: https://brahe.canisius.edu/~meyer/253/BOOK/ch20/GIFs/Fig20_10_2.gif]
Fig. 20.10.2: Simulating the atmosphere using embarrassing parallelism

[bookmark: _GoBack]Contrast this to the following where each baby gets four chunks to simulate, but all the babies use the same CO2 growth rate. They all cooperate to complete one simulation. To test a different value of the parameter, all nodes load the new value and restart.
[bookmark: #Fig20_10_2][image: https://brahe.canisius.edu/~meyer/253/BOOK/ch20/GIFs/Fig20_10_3.gif]
Fig. 20.10.3: Simulating the atmosphere using finer grained parallelism
[bookmark: #Fig20_10_3]The embarrassingly parallel solution requires that each baby works on its version of the problem for the full K calculation steps (where K could be many trillions). The finer-grained version finishes earlier because each baby only does K/4 calculations. However, it only investigates one value of the parameter.
The speedup of the two strategies is not identical because the finer-grained version requires communication at the "edges." The chunks of the atmosphere that lie in different baby nodes still influence each other and that influence must be communicated between the baby nodes using messages passed during the simulation, which slows down the simulation considerably.
Thus, there are trade-offs to the different strategies. Embarrassingly parallel is useful where the scientist wants to try a wide range of parameter values, whereas fine-grained simulations are more suited to the case where the scientist needs to plug in one specific value and get the answer as quickly as possible.
Cluster computing is advancing all the time. MPI has gone through a major revision and there are now heterogeneous clusters in operation. Not all nodes are the same size or speed anymore. Also, some systems use totally dissimilar baby nodes. PVM is a library of functions, similar to MPI, only meant to operate in these heterogeneous clusters. The baby nodes might run different operating systems and possibly programs written in different languages.
The main effect of cluster computing has been to make supercomputing cheaper and also quicker to develop. With the democratization of supercomputing, more scientists than ever can try out theories using relatively cheap hardware, and computer companies and labs can try different configurations more quickly than ever. However, writing the software that can tap into this enormous power remains the chief hurdle. Software always seems to lag behind hardware.

34

image4.gif

image5.gif

image6.gif

image7.gif

image8.gif

image9.gif

image10.gif

image11.gif

image12.gif

image13.gif

image14.gif

image1.gif

image2.gif

image3.gif

