Section 3.1
Minimizing circuits

Some circuits are bigger than they need to be. The function they compute (which is the truth table they generate) is identical to one computed by a smaller, simpler circuit. In the interests of time, money and space, the smaller circuit should be used instead.
There are a few obvious circuits that should be replaced by simpler ones. For example, a string of NOT gates can be reduced to 1 or 0 NOT gates, as shown in Fig. 3.3.1, much like pairs of negative signs on negative numbers can be crossed out.
[image: https://brahe.canisius.edu/~meyer/253/BOOK/ch3/GIFs/Fig3_1_1.gif]
Fig. 3.1.1: Sequence NOT gates can be reduced to 0 or 1 NOT
If there is an even number of NOT gates, just remove them. If there is an odd number of NOT gates, keep only one, since NOT NOT A is just A.
Another, less obvious simplification comes from the following strange looking circuit (Fig. 3.1.2):
[bookmark: #Fig3_1_1][image: https://brahe.canisius.edu/~meyer/253/BOOK/ch3/GIFs/Fig3_1_2.gif]
Fig. 3.1.2: A circuit that can be simplified
Let's analyze the output of this circuit, especially the NOT and AND gates coming from A. If A is 0, then the output of NOT is 1, and the AND of 0 and 1 is 0. If A is 1, then the output of NOT is 0, and the AND of 1 and 0 is 0. Thus, no matter what the value of A is, A*A' is always 0, because the AND of 0 and anything is 0. Since B is OR'ed with this wire, which is always 0, the output of the OR gate will always be whatever B's value is. Hence, we could drop all the gates and just keep wire B.


A similar situation happens with OR (Fig. 3.1.3). This circuit always yields 1 since the OR of 1 and anything is always 1, and the NOT gate ensures that at least one of the inputs of the OR gate will be a 1.
[bookmark: #Fig3_1_2][image: https://brahe.canisius.edu/~meyer/253/BOOK/ch3/GIFs/Fig3_1_3.gif]
Fig. 3.1.3: A circuit that always has 1 on the output wire
[bookmark: #Fig3_1_3]These observations lead us to identities which allow us to replace one Boolean expression with another without changing the truth table generated. In some cases, the use of such identities can gives us a substantially smaller expression, which translates into a smaller circuit. For example,
A(B + C) + A'(B + C)
becomes (B+C). In fact, this replacement of a circuit with a smaller one is extremely important economically. It is called minimization although that is a slightly misleading term since it may not be possible to find the absolutely smallest equivalent circuit.
 


Section 3.2
Identities of Boolean algebra

Here are the standard identities of Boolean algebra.
[image: https://brahe.canisius.edu/~meyer/253/BOOK/ch3/GIFs/Fig3_2_1.gif]
Fig. 3.2.1: Boolean Algebra Identities
[bookmark: #Fig3_2_1]The third column gives an alternate way of writing the Boolean expressions by removing the dot altogether. Remember that sometimes the dot ([image: https://brahe.canisius.edu/~meyer/253/BOOK/dot.gif]) is used to show AND, while sometimes the asterisk is used. But more often, AND is denoted by juxtaposition of the terms without any symbol at all, much like multiplication in real algebra.
Some of these identities should be familiar. Double negation was discussed in the context of two NOT gates in a row. Tautology and contradiction were also analyzed by looking at their equivalent AND and OR gates. These two words, tautology (which means "always true") and contradiction (which means "they speak against each other" and thereby "always false") come from traditional logic, which also combines logical propositions using AND, OR and NOT.
The identity, zero and commutative identities have obvious counterparts in real algebra and should not be surprising. The associative laws are equally unsurprising. However, idempotency is new and appears to be a blatant falsehood. How can anything plus itself be itself? That is impossible in the world of numbers, but in the world of logic, there is only true and false (1 and 0) and when two trues combine, they just form true, not true+2. The word idempotency comes from Latin and means having the same power. Thus, A+A has the same power as A, as does A[image: https://brahe.canisius.edu/~meyer/253/BOOK/dot.gif]A. While this identity doesn't look very useful, it will prove to be quite helpful later, especially when combined with the commutative and associative identities.
The distributive identities, one where AND distributes over OR, and a mirror image where OR distributes over AND, should ring a bell of familiarity with real number algebra, except for the fact that there is no distributivity of addition over multiplication in real numbers. That is,
               a+bc [image: https://brahe.canisius.edu/~meyer/253/BOOK/notequals.gif] (a+b)(a+c)
in the world of integers and reals. But again, in the world of Boolean algebra the nature of the two truth values makes for a few surprises.
How would one be convinced that the distributive identities are true? In the next section, we will demonstrate a truth table that allows us to quickly prove or disprove identities.
Finally De Morgan's Laws (identities are also called laws) show how negation distributes over AND and OR. Some people mistakenly think that a NOT sign on the outside of an expression can be merely brought inside. However, in Boolean algebra the NOT sign can be brought inside only if the Boolean operator is "flipped" by changing an AND to OR or an OR to AND.
 


Section 3.3
Proving Equivalence

Each of these identities or laws can be proved by using a truth table. To do this, build a truth table for the expression on the left side of the equals sign and another for the right side. Then compare the two sides. Let's do this for the first form of De Morgan's Law.
First make up a 4-row truth table, since there are two original variables: A and B. Then build up the left side, which would first OR together A and B, then NOT that result:
A     B   |   A+B     (A+B)'
----------+-----------------
0     0   |    0        1
0     1   |    1        0
1     0   |    1        0
1     1   |    1        0
Next do the same for the right hand side. First find the logical negations of A and B. Then AND those together:
A     B    |   A+B     (A+B)'     A'     B'     A'*B'
-----------+-----------------------------------------
0     0    |    0        1        1      1        1
0     1    |    1        0        1      0        0
1     0    |    1        0        0      1        0
1     1    |    1        0        0      0        0
Finally, comparing the two columns labeled (A+B)' and A'*B', which were the two expressions that were said to be equal, we see that both columns have exactly the same pattern of 1s and 0s. Thus, these two expressions compute the same Boolean function and are therefore equivalent. This means they are also interchangeable; just like in real number algebra, any occurrence of (A+B)' could be replaced with A'*B' without changing the value of the expression.
It is worth reflecting on the fact that this method of proof will not work for expressions that include integers or real numbers since the corresponding tables would need to have an infinite number of rows to prove all cases. But since there are only two values in Boolean algebra, there will always be a finite number of rows.
 
Section 3.4
Transforming Boolean expressions

[bookmark: _GoBack]Armed with the Boolean identities, we can alter any Boolean expression by replacing it or any of its constituent subexpressions by equivalent expressions. Again, this process should be familiar from numerical algebra. At first, we will show every step and take no shortcuts, but later we will get a bit sloppy, especially with the more obvious identities of associativity and commutativity.
Let's do something with A(B+C) + A'(B+C). Here's a formal step by step proof that this is equivalent to B+C.
   1.  A(B+C) + A'(B+C)     Statement
   2.  (A+A')(B+C)          Distributive (B+C) is the common element
   3.  1(B+C)               Tautology
   4.  B+C                  Identity element
These proofs are like high school geometry proofs. The left column is an expression that is equivalent to the expression on the line above it, except for the first line, which is the given statement. Then each line advances the process of transforming the expression one step, explaining what rule was used to justify the transformation.
In the above proof, we could have started with B+C and proved that A(B+C) + A'(B+C) is equivalent to it. We would use the same identities, only in reverse order.
Aren't these fun? Let's do another!
   1.  A + A'B' + B         Statement
   2.  A + (A+B)' + B       De Morgan's Law
   3.  A + B + (A+B)'       Commutative
   4.  (A+B) + (A+B)'       Associative (regrouping)
   5.  1                    Tautology
In this example, we treated (A+B) as if it were a single Boolean variable. That is, we viewed the expression (A+B) + (A+B)' as if it were X + X', from which we derived 1. This is valid because if A and B are Boolean variables, then A+B is also a Boolean variable which it takes on either the value 1 or 0. If we see A+B in an expression OR'ed with (A+B)', then whenever A+B has the value 1, (A+B)' will have the value 0, and the OR of 1 and 0 is 1. The same reasoning applies when A+B has the value 0.
The substitution of expressions for variables is the same in real mathematics, where we learn that anything divided by itself is 1, so that (x + 5) ÷ (x + 5) is 1, no matter what x is (actually, as long as x is not -5, which would cause an illegal division by 0.)
Let's show that A*B can be treated as a single Boolean variable by investigating what (A*B)'' turns into:
   1.  (A*B)''              Statement
   2.  (A'+B')'             De Morgan's Law
   3.  A'' * B''            De Morgan's Law
   4.  A * B''              Double negation
   5.  A * B                Double negation
Notice that we didn't think of (A*B) as one "variable" but instead ripped it apart using De Morgan's law (twice). By doing this and applying the identities to the inner pieces, we come up with A*B, which we would expect, since X'' is X, no matter what X is. X could be a Boolean constant (1 or 0), in which case the expressions are equivalent. Or X could be a single Boolean variable, or it could be a complicated expression, such as A*B. In every case, X'' = X.
One common error that many are tempted to make is to bring both NOTs into the parentheses at the same time, as shown below:
   1.  (A*B)''              Statement
   2.  (A''+B'')            WRONG!,    (A*B)'' is A*B
                                          and (A''*B'') is (A'+B')'
This would give (A+B) after removing the double negations on the A'' and B''. But A+B is definitely not the same function as A*B. We must be careful to apply only one step at a time, unless we are sure it is correct. For example, many people (correctly) go from A'' * B'' to A*B.
Finally, let's analyze a truth table to come up with the smallest possible Boolean expression. First the truth table:
  A     B    |    C
-------------+------
  0     0    |    1
  0     1    |    1
  1     0    |    0
  1     1    |    1
Applying the minterm method, we get the following sum of products expression:
A'B' + A'B + AB
This expression can be simplified and shortened. Here are the steps:
   1.  A'B' + A'B + AB          Statement
   2.  A'B' + A'B + A'B + AB    Idempotency
   3.  A'(B' + B) + A'B + AB    Distributive law
   4.  A'1 + A'B + AB           Tautology
   5.  A' + A'B + AB            Identity
   6.  A' + (A' + A)B           Distributive law
   7.  A' + 1B                  Tautology
   8.  A' + B                   Identity
This expression is certainly a lot smaller. How do we know it is the smallest? Actually, we don't and there is no general rule of finding the smallest expression for any Boolean expression. This is one of those nasty undecidable, unsolvable problems. However, in this course, we will assume that if the expression is considerably shorter, then it is minimized.
Notice that step 2 was crucial. In this step we duplicate the term A'B so that we can combine A' with A'B' using associativity, and B with AB also using associativity. Knowing when to do this requires some experience, skill and imagination.
 

7

image5.gif

image6.gif

image1.gif

image2.gif

image3.gif

image4.gif

