Section 7.1
Architecture of the CSC-1

In the next couple of chapters we will study the CSC-1 computer, which is a simple computer architecture, yet fully capable of running real programs, if only we could find a chip manufacturer! CSC-1 stands for "Canisius Simple Computer, Version 1" If we are successful, we will change that to "Canisius Super Computer, Price 1 Million."
Below is a diagram of the CPU, which we will explain in detail. Such diagrams are called block diagrams because they show the major functional units without delving into the individual gates.
[image: https://brahe.canisius.edu/~meyer/253/BOOK/ch7/GIFs/Fig7_1_1.gif]
Fig. 7.1.1: Block Diagram of the CSC-1
Each of the smaller rectangles are registers, composed of 16 flip-flops, except for the MAR, which is 12 flip-flops. They have 16 input wires and 16 output wires, one per flip-flop. In addition, there is a load wire which is connected to the CK wires of each flip-flop. The register stores a new value only when this load wire goes high. 



Fig. 7.1.2 shows a block diagram of a 16-bit register.
[bookmark: #Fig7_1_1][image: https://brahe.canisius.edu/~meyer/253/BOOK/ch7/GIFs/Fig7_1_2.gif]
Fig. 7.1.2: Block Diagram of a 16-bit register with load wire
In addition to the load wire, some registers have a clear wire which when high puts 0 into every flip-flop of the register. One register, PC, contains an increment wire which when set high adds 1 to the binary number contained in the register. Though this sounds like there would need to be an extra adder just for this register, it is relatively easy to build a register which does this; a full adder is not required, merely some AND gates to propagate the carry through the register's flip-flops. In Fig. 7.1.3 we show the block diagram for one of these "super registers."
[bookmark: #Fig7_1_2][image: https://brahe.canisius.edu/~meyer/253/BOOK/ch7/GIFs/Fig7_1_3.gif]
Fig. 7.1.3: Super Register with load, clear and increment wires


There are seven registers in CSC-1:
	A
	accumulator
	stores the result of arithmetic operations as well as one of the operands

	TMP
	temporary
	stores the second operand of arithmetic operations

	S
	secondary
	a temporary storage place for accumulator values, most often used in calculated memory addresses for indirect loads and stores

	PC
	program counter
	contains the address of the next instruction in memory to be executed.

	IR
	instruction register
	contains the actual instruction which is being currently executed.

	MAR
	memory address register
	contains the address of the memory word to be read or written

	MBR
	memory buffer register
	contains the value of the word to be written into memory, or the value of the word just read from memory


The MAR and MBR are old friends, and work just as described in Chapter 6. Here are some statistics on the CSC-1:
	Size of MAR = 12 bits
	This implies that there are 4096 words in memory.

	Size of MBR = 16 bits
	Each word of memory is 16 bits wide. Thus the CSC-1 is not byte addressable, but rather word addressable.

	All other regs = 16 bits wide
	One word of memory fits snugly into A, S, PC, IR, or TMP


The instruction register is divided into two sections conceptually, but not physically. Fig. 7.1.4 shows this division. The first four bits are commonly called the opcode, short for operation code. The contents of these bits form a 4-bit binary number which tells the control unit which instruction to perform. The remaining 12 bits form the operand, which is either a 12-bit binary number or an address.
[bookmark: #Fig7_1_3][image: https://brahe.canisius.edu/~meyer/253/BOOK/ch7/GIFs/Fig7_1_4.gif]
Fig. 7.1.4: Breakdown of the fields of an instruction
[bookmark: #Fig7_1_4]The opcode field being 4 bits long implies that there can only be 16 instructions, since 24 = 16. However, there are more than 16 instructions in the CSC-1, 24 to be exact. But 9 of these do not require an operand. Thus, their opcodes can be longer than 4 bits. Because the computer needs to know when to interpret the remaining 12-bits as operand or part of the opcode, one of the opcodes, 1111, is reserved to mean "what follows is not an operand, but part of an extended opcode" for those instructions which need no operand.
 


Section 7.2
Instructions of the CSC-1

Here is the complete list of CSC-1 instructions along with their opcodes and formats and assembler mnemonics, (pronounced nee-MAHN-niks) which are short names of 2 or 3 characters used in writing assembler programs.
opcode mnemonic        format                   meaning
--------------------------------------------------------------------------
0000      LOD     0000xxxxxxxxxxxx   Load memory word xx... into A
0001      STD     0001xxxxxxxxxxxx   Store A into memory xx...
0010      LDI     0010kkkkkkkkkkkk   Load constant kk... into A
0011      ADD     0011xxxxxxxxxxxx   Add memory word xx... to A
0100      SUB     0100xxxxxxxxxxxx   Subtract memory word xx...from A
0101      AND     0101xxxxxxxxxxxx   Boolean bitwise AND of memory with A
0110      OR      0110xxxxxxxxxxxx   Boolean bitwise OR of memory with A
0111      NOT     0111xxxxxxxxxxxx   Boolean bitwise NOT of memory
1000      JMP     1000xxxxxxxxxxxx   Jump to address xx... unconditionally
1001      JZ      1001xxxxxxxxxxxx   Jump to address xx... if Z=1
1010      JC      1010xxxxxxxxxxxx   Jump to address xx... if C=1
1011      JV      1011xxxxxxxxxxxx   Jump to address xx... if V=1
1100      JN      1100xxxxxxxxxxxx   Jump to address xx... if N=1
1101      JP      1101xxxxxxxxxxxx   Jump to address xx... if N=0 and Z=0
1110      CAL     1110xxxxxxxxxxxx   Call subroutine xx...
11110001  RET     1111000100000000   Return from subroutine
11110010  A2S     1111001000000000   Copy A into S
11110011  S2A     1111001100000000   Copy S into A
11110100  SHL     1111010000000000   Shift Left 1 bit (logical shift)
11110101  SHR     1111010100000000   Shift Right 1 bit (logical shift)
11110110  LDS     1111011000000000   Load A via S (indirect load)
11110111  STS     1111011100000000   Store A via S (indirect store)
11111000  NOP     1111100000000000   No Operation (waste cycle)
11111001  HLT     1111100100000000   Halt the computer
We will become very familiar with these instructions as we learn to implement them and to write simple assembler programs using them.
In the above notation, xxxxxxxxxxxx is a 12-bit binary number. Since it is a memory address, it is unsigned.
kkkkkkkkkkkk is also a 12-bit binary number, also unsigned. It is just a binary number, from 0 to 4095, and is not necessarily a memory address. The letter k was chosen because this number is a constant (konstant in German) that is plunked into the A register by the LDI instruction.
 
Section 7.3
Control Points

The CSC-1 architecture has a number of control points, which are wires that cause things to happen, like registers to load or the ALU to add or subtract or the memory to read or write. Another part of the computer, the control unit, sets these wires according to the instruction being executed.
Go back and carefully examine Fig. 7.1.1, the block diagram for the CSC-1. Notice that each register has a load wire, which is not explicitly labeled. PC also has an increment and clear wire. We will name these wires as PC-LD or S-LD or A-LD. PC also has PC-CLR and PC-INCR. MBR-LD is the old familiar MBRCK of Chapter 5.
Multiplexors are used to channel more than one input into a register. In fact, only IR and TMP do not have a mux. Remember that all these inputs to registers are 16 bits wide, so these muxes take in 32, 48 or 64 wires and output 16 to the register. The mux that feeds the MAR has 48 wires because data from three different sources can be directed into the MAR. The mux that feeds the accumulator, A, has 64 wires because there are four input sources. All others have 2 sources, hence 32 wires.
Each multiplexor is controlled by a mux selector wire or wires which tells which of the inputs to let pass through into the register. Two input muxes have just one wire, which decides between the two sources using 0 and 1. The A mux has four inputs, so it needs 2 mux control wires, which function as a 2-bit address, deciding between the four inputs. The MAR mux has three inputs, but it still needs two control wires, even though one of the combinations is wasted. Remember that a register doesn't actually load until its LD wire goes high, so just because a value is put on the mux control wire doesn't mean anything happens yet.
We will name the mux control wires by appending the name of the register they feed, along with subscripts if there is more than one. Thus, the mux feeding PC has just one control wire, PC-MUX. The wires going into A's mux are A-MUX0 and A-MUX1. Likewise for the others.
The main memory is controlled by the familiar WR and MA wires.


The ALU does the main work of the computer: adding, taking the 2's complement, doing the Boolean logical operations, and other things. Each of these functions is distinguished by a mini-opcode whose binary number is put onto the three wires F0, F1 and F2. Here are the operations that the CSC-1 ALU performs:
  F2  F1  F0
--------------------------------------------------------------------
  0   0   0     identity A     pass through A's value unchanged
  0   0   1     identity TMP   pass through TMP's value unchanged
  0   1   0     A and TMP      bitwise Boolean AND of A and TMP
  0   1   1     A or TMP       bitwise Boolean OR of A and TMP
  1   0   0     not A          bitwise Boolean NOT of A (TMP ignored)
  1   0   1     A + TMP        arithmetic addition of A and TMP
  1   1   0     A - TMP        arithmetic subtraction of A and TMP
  1   1   1     unused
Subtraction is accomplished by forming the 2's complement of TMP before feeding it into the adder. All these circuits are inside the ALU box.
After the ALU forms its results, the CNVZ bits are set as discussed in Chapter 6.
The shifter is a separate box that takes the output of the ALU and performs either a logical shift or passes through the value unchanged. It is controlled by a 2-bit mini-opcode in the control wires S1 and S0:
  S1  S0
-----------------------------------------------------------------
  0   0     do nothing           pass input to output unchanged
  0   1     right shift 1 bit    logical right shift
  1   0     left shift 1 bit     logical left shift
  1   1     unused
 


Section 7.4
Register Transfer Language

When CSC-1 performs ADD 3570, the effect is to add the contents of the A register to the contents of the memory word addressed by 3570, and to store the sum back into the A register. We can write this more succinctly in the following language:
A <- A + m[3570]
This form of writing down the function of the ADD instruction is called RTL, or register transfer language, since it shows the transfers of data from one register to another.
The notation used for memory resembles arrays in a high level programming language like C. m[3570] means the memory word addressed by 3570. Addresses in the CSC-1 go from 0 up to 4095, since there are 12 bits in addresses. In the RTL statement above, the memory operation is read and the WR wire would be set to low since m[3570] appears on the right hand side of the assignment arrow.
Here is what the STD 2148 instruction would be encoded as:
m[2148] <- A
Since m[2148] is on the left side of the arrow, the memory operation is write and the WR wire would be 1, while MA is set to 1.
The expression m[2148] is deceptively simple. Though we seem to intuitively understand that it is reading from or writing to memory, what is really happening is that the address, 2148 in this case, is copied into the MAR, MA is set to 1, WR is set to 0 or 1 depending upon what we want done, wait for the memory to complete its task, and then get the value out of MBR. For a write, we first put a value into the MBR. However, the beauty of RTL is that these details are hidden and all timing considerations are waved away as if by magic.
RTL resembles an extremely simple version of a high level programming language, like C. Imagine there is a large one-dimensional integer array called m, and several integer variables called A, PC, etc. The left pointing arrow is just the assignment operator: = in C or := in Pascal and Modula-2 and Ada.
The only expressions that can appear on the left hand side of an RTL statement are those that are permitted by the hardware, namely the functions of the ALU and the shifter. For example, when the binary addition function is used, we will write:
A <- A + TMP
The shifter's direction will be designed by using the C language's operators: << for shift left 1 bit and >> for shift right 1 bit.
A <- A << 1
The ALU can also pass through A or TMP unchanged. We will write either A or TMP on the right hand side of <- to indicate this. For example, if we wanted to copy TMP's value into A, we could write:
A <- TMP
The following table presents the functions of the ALU using RTL:
F2 F1 F0     function of ALU        RTL
----------------------------------------
0  0  0      identity A             A
0  0  1      identity TMP           TMP
0  1  0      A and TMP              A & TMP
0  1  1      A or TMP               A | TMP
1  0  0      not A                  -A
1  0  1      A + TMP                A + TMP
1  1  0      A - TMP                A - TMP
1  1  1      unused
These RTL instructions are actually implemented by setting the control points and it is the job of the control unit to implement RTL this way. Each machine instruction of CSC-1 could be written using RTL.
 


Section 7.5
Fetch/decode/execute cycle

In the course of running a machine language program on the CSC-1, the control unit sets various control wires to 1 or 0 at the appropriate time in order to execute primitive instructions of a machine language program. All high level programs written in C, BASIC, FORTRAN, Java or the myriad of other programming languages, must ultimately be turned into a stream of primitive machine instructions, since this is all that the actual hardware understands. Doing just one instruction involves a lot of tiny steps. This is done millions of times per second on even personal computers nowadays. It is amazing to think of the myriad changes in the movements of electrons that occur in the fastest blink of an eye while typing on the keyboard, moving the mouse or watching the screen repaint itself. We will now dissect the steps that the hardware goes through when it performs just one instruction.
This cycle, one complete instruction execution, is often called the fetch/decode/execute cycle, or just the machine cycle or the instruction cycle. The CSC-1 computer is typical of many computers so we will study it as a prototype.
When the CSC-1 is ready to do an instruction, it goes through the following steps:
1. PC is copied into the MAR and a memory read is initiated. When the memory is done, the MBR is copied into the IR. One is added to the PC to point it to the next instruction. This is called the instruction fetch stage.
2. The instruction in the IR is decoded by a special decoder in the control unit. This is where the opcode triggers the various control points that implement this instruction. This is called the operation decoding stage.
3. Next comes an optional step, depending upon the instruction. If the instruction has an operand that is a memory address, the lower 12-bits of the IR are copied into the MAR and another memory read is initiated. When done, the MBR is copied into the TMP register. This is called the operand fetch stage.
4. Finally the real work gets done, which is the actual instruction getting executed. In this step, the values flow through the ALU and shifter and are latched back into the A register. This is called the execute stage.
There are several variations on this plan. First of all, if there is no operand, as is the case with instructions A2S, S2A, HLT, STS, LDS, SHL, SHR, NOP and RET, the operand fetch stage is skipped and the computer immediately moves on to executing the instruction. Thus, these no-operand instructions are faster.
Second, the LDI instruction merely copies the lower 12-bits of the IR directly into the TMP register without going to memory. LDI stands for LoaD Immediate. The adjective immediate is used when the data is immediately available in the instruction, and does have to be explicitly fetch later. LDI is faster than LOD because the second memory read (operand fetch step) can be skipped.
Third, several of the instructions alter the program counter, or PC register. This is done during the execute stage by writing a new value into PC. Notice that 1 is added to PC after the instruction is fetched. However, if PC is entirely overwritten, this incremented PC value is lost and has no effect. The following instructions all change PC: JMP, JZ, JC, JP, JN, JV, CAL, RET. Some of them always change the PC, like JMP, CAL, and RET. These are called unconditional jumps. Others are conditional because they depend upon the condition bits CNVZ. Note that JP, jump positive, is done when N=0. All others are done when one of the four condition bits is 1. Synonyms for jump are branch or goto.
CAL and RET are used to call a subroutine and return from it. Subroutine is another term for subprogram, function or procedure. All are implemented in the same way. These instructions are considered jumps because they alter PC.
Fourth, the store instructions STD and STS write to memory as part of their execute phase. They do not have an operand fetch phase, because their operand is really an address of where to store the value of the A register.
Fifth, the NOP instruction does nothing other than add 1 to PC. This is useful to machine language programmers who might need to add instructions in the middle of a section of code later.
Sixth and lastly, the HLT instruction is very special, since it causes the computer to cease going through its fetch/decode/execute cycle. When HLT is executed, a special bit is set and the cycle of operands is no longer done. Some computers have external buttons that when pressed cause the computer to halt, resume where they left off, or start from 0. Most computers, when they come to life after the power is termed on, start executing a system program that is stored at 0. Thus, 0 is loaded into the PC register and the fetch/decode/execute cycle is begun. This is called booting the computer because it seems as though the computer is pulling itself up by its own bootstraps, or starting itself in a seemingly impossibly circular fashion.
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Section 7.6
Example of control points and the fetch/decode/execute cycle

Let us go through one complete ADD instruction in tedious detail so we can see how the control points are set during the stages of the instruction cycle. Some of the extraneous lines have been omitted from the block diagrams to make the picture clearer.
1. The beginning of the cycle, PC has the address 257. Memory word 257 contains a bit pattern that we can interpret as ADD 3170. The bit pattern is actually 0011110001100010. The first four bits 0011 are the ADD instruction, while 110001100010 is the binary number 3170.
[image: https://brahe.canisius.edu/~meyer/253/BOOK/ch7/INSERTs/GIFs/Ins7-1.gif]


2. The first thing to happen is to set the MAR-MUX so The MAR-MUX is set so that PC's output is copied into MAR when MAR-LD goes high. This puts the address of the next instruction into MAR:
[image: https://brahe.canisius.edu/~meyer/253/BOOK/ch7/INSERTs/GIFs/Ins7-2.gif]


3. At this point, the PC-INCR wire goes high, followed briefly by PC-LD, which causes the value of PC to be incremented by 1. This sets up the machine so that the next instruction to be done will be the next one in sequence, at the next word in memory. If the instruction is a jump of some type, the value in PC will be completely overwritten later, so it doesn't hurt to add 1 to the PC. This step is usually done in parallel with the next step in order to save time by telescoping non-interfering actions together.
[image: https://brahe.canisius.edu/~meyer/253/BOOK/ch7/INSERTs/GIFs/Ins7-3.gif]


4. Next MA (memory active) is set to 1, WR=0 to indicate this is a read and not a write, and the memory is given enough time to go fetch the needed value.
[image: https://brahe.canisius.edu/~meyer/253/BOOK/ch7/INSERTs/GIFs/Ins7-4.gif]
5. Eventually the memory deposits "ADD 3170" into the MBR.
[image: https://brahe.canisius.edu/~meyer/253/BOOK/ch7/INSERTs/GIFs/Ins7-5.gif]
6. This is then copied to the IR. MA is set to 0. This is the end of the instruction fetch stage.
[image: https://brahe.canisius.edu/~meyer/253/BOOK/ch7/INSERTs/GIFs/Ins7-6.gif]


7. The value in IR is broken down by the opcode decoder, which sees that 0011 (the first 4 bits) are the ADD instruction. It "knows" that the last 12 bits are then the operand address so it will set up the wires to fetch the value. The decoder causes the ADD wire to go high. This is the operation decode stage.
[image: https://brahe.canisius.edu/~meyer/253/BOOK/ch7/INSERTs/GIFs/Ins7-7.gif]


8. The lower 12 bits of the IR are copied into MAR (the top 4 are ignored; the MAR is only 12 bits long anyway), which is the beginning of the operand fetch stage. The operand is located inside memory word 3170, and is the value 11.
[image: https://brahe.canisius.edu/~meyer/253/BOOK/ch7/INSERTs/GIFs/Ins7-8.gif]
9. Then the MA wire is set to 1 again to initiate another memory read.
[image: https://brahe.canisius.edu/~meyer/253/BOOK/ch7/INSERTs/GIFs/Ins7-9.gif]
10. We wait for memory, which eventually puts the value 11 into the MBR.
[image: https://brahe.canisius.edu/~meyer/253/BOOK/ch7/INSERTs/GIFs/Ins7-10.gif]
11. Then we set TMP-LD high which copies the MBR into TMP, and turn off MA. This is the end of the operand fetch stage.
[image: https://brahe.canisius.edu/~meyer/253/BOOK/ch7/INSERTs/GIFs/Ins7-11.gif]
12. The appropriate code for addition (101) is fed into the F wires which control the ALU's function, and the contents of A and TMP are added together. The CNVZ bits are all set when the new value is computed, too. This output immediately goes into the shifter, but its code (on the two S wires) is 00 so the new value 34 just passes its value through to the output.
[image: https://brahe.canisius.edu/~meyer/253/BOOK/ch7/INSERTs/GIFs/Ins7-12.gif]


13. The output of the shifter is selected by the A-MUX wires; all other inputs to the A register are of course ignored. A-LD is turned on and the new value is latched into the A register. This is the end of the execute phase.
[image: https://brahe.canisius.edu/~meyer/253/BOOK/ch7/INSERTs/GIFs/Ins7-13.gif]
Now the computer is ready to begin the next instruction, which will be at location 258 (not shown in the pictures.)
Click here to see an animation of this entire cycle.
If the frames go by too fast, just wait because the animated GIF cycles back to the beginning again and again, until you click on the back button.
Different instructions cause different pathways to be chosen. For example, STD causes the value in A to be copied into MBR and then a memory write operation is activated. A doesn't get changed in the process, but some word of memory gets overwritten with A's value.
The control unit uses the current instruction to activate a sequence of pathways to get the proper job done. If the ADD wire is high, the sequence shown above is always done. If the STD wire is high instead, a different sequence is done. The first couple of steps, up through the instruction fetch stage and incrementing of the PC, are always done by every instruction, even HLT and NOP. From that point, differences occur depending upon which instruction is being performed.
A tiny but important point needs to be cleared up, especially since the above diagrams are a bit confusing. The output of a register is copied onto the wires that emanate from that register and the signals almost immediately travel to their destinations, which are usually muxes or other registers. However, these values are not latched into the registers until the LD wire goes high. Moreover, when there are several inputs to a mux, only one is selected by the associated mux select wires.
The above pictures only show in red those pathways that are of interest to us. Below is one of diagrams shown as it "really is." The output of the IR register is about to be copied into the MAR. Notice that every wire that emanates from IR is colored red and thickened a bit. These wires go into the PC's mux, A's mux, the MAR's mux, the MBR's mux and the instruction decoder. However, PC is not changed because PC-LD is not high. Neither are A or MBR changed because their LD wires are 0. Only MAR is changed. The instruction decoder is always "reading" the top 8 bits of IR and setting the appropriate instruction wire high, ADD in this case. But as long as IR's value doesn't change, it doesn't hurt anything for this decoding to happen continuously.
It is important to be aware of the way things "really are," even though we ignore some of the details in order to focus on the important aspects of the instructions' actions.
[image: https://brahe.canisius.edu/~meyer/253/BOOK/ch7/INSERTs/GIFs/Ins7-14.gif]
 


Section 7.7
The structure of the control unit

By now we are wondering how any circuitry could possibly manage all these control points for such a complex instruction set. It is not merely a question of which wires to turn on, given, say the ADD instruction, but they must be turned on and off in a certain sequence and at certain times. Computer designers have to worry about waiting the proper amount of time for the memory to do its operation, for values to emerge from decoders, for bits to latch into flip-flops, and for many other things.
One way to manage this intellectual challenge is to resort to a mathematical construct called a DFA, or deterministic finite automaton. A DFA is a graph, which is a set of nodes and arcs that have labels. A node is a circle and represents a state, while an arc is an arrow, or directed line, between nodes, which represents an input or a condition. Fig. 7.7.1 is a typical DFA.
[image: https://brahe.canisius.edu/~meyer/253/BOOK/ch7/GIFs/Fig7_7_1.gif]
Fig. 7.7.1: DFA (Deterministic Finite Automaton)
Each state has a number: 0, 1, 2 and 3. Between two states there may be 0 or more arrows, each having a label.
There are several ways of interpreting DFAs. One of these is helping programs to recognize correctly formed expressions or linguistic utterances. In this course, we will use them to describe states of a system. For example, suppose that this DFA controls a house's furnace. State 0 might be the state the furnace is off. Input a represents a reading from the thermostat, saying that it is too cold in the house. State 1 says the furnace is firing up. When another sensor inside the burner section says that it is hot enough, it sends the signal "b" which causes the furnace to go into state 2: the blower is turned on. Input d might be another reading from the thermostat, saying the house's air is still below the desired temperature, which causes the furnace to keep running. Finally, input c might be a reading from the thermostat saying it is finally toasty in here, upon which cue the furnace goes into state 3. State 3 might represent a cooling down period -- the furnace cannot start burning again right away for safety reasons. If the sensors determine that it is still too cold, input c, the furnace goes back to state 1 and turns the burners back on, while if it is warm enough, the furnace goes back to sleep, state 0.
In the CSC-1, a hardware DFA manages the control points. The DFA encodes all the instructions in the machine language given in section 3 above, as well as every aspect of the fetch/decode/execute cycle. State 0 is the initial state that the computer is in just as it is starting the next instruction. In that state it would allow the PC's value to be copied into the MAR. Then it goes to state 1, where it turns on MA, turn off WR, allowing the memory to fetch the next instruction. In state 2, the new value in the MBR, the next instruction, is copied into the IR register. Some nodes have unlabeled arcs between them, and there is such an arc between state 0 and state 1, and again between state 1 and state 2. If an arc is unlabeled, it means that the device can go from the initial state to the next state without sensing any conditions or getting "permission" from any other circuit. State 1 follows state 0, no matter what. In a hardware DFA used in a computer's control unit, there needs to be a pause of time between states to allow these circuits to function properly.
When CSC-1 leaves state 2, it could go to one of several states, depending upon which type of instruction. If the instruction has an operand, such as ADD or LOD, then the operand fetch stage has to be entered, so the IR has to be copied into the MAR. But if the instruction has no operand, a different state will be entered. Ultimately, the movement from these states to the next states depends on which instruction is being executed.


Fig. 7.7.2 below shows a rough outline of the CSC-1's DFA. It is not complete.
[bookmark: #Fig7_7_1][image: https://brahe.canisius.edu/~meyer/253/BOOK/ch7/GIFs/Fig7_7_2.gif]
Fig. 7.7.2: The control DFA for the CSC-1
Coming out of the IR are wires that have a binary number on them, the opcode. These wires go into a decoder that sets 1 and only 1 of its outputs to 1. This output wire corresponds exactly to the one of the CSC-1's instructions, so these wires can be labeled with their machine instructions. Fig. 7.7.3 shows this decoding. Remember that the first 8 bits of the IR, not merely the first 4, determine which operation is being done.
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Fig. 7.7.3: Decoding the CSC-1 instructions
[bookmark: #Fig7_7_3]These wires are used in combination with other wires by ANDing them together to set the appropriate control points at the appropriate times. The sequencing of the DFA (this step comes after this one...) is what imparts the timing to the instruction, while the output of the operation decoder is what causes the right action to be performed.
In order to keep the computer moving from one state to another in a timely fashion, the control unit has a clock which emits a regular series of pulses. These pulses are sent through various delay gates and used by the hardware DFA to make transitions to the next state after a measured amount of time. The bus and other devices, like I/O controllers, have their own clocks that are not linked into the main computer's clock.
When a computer's clock speed is advertised, such as a 120 MHz Pentium, it is the speed of the controlling DFA clock which is being touted. Another name for cycle is Hertz, in honor of a German physicist, Heinrich Rudolf Hertz (1857-1894) who worked on electromagnetic phenomena. One Hertz, abbreviated as Hz, is one cycle per second, so 120 MHz (pronounce "megahertz") is 120,000,000 cycles every second. Of course, one complete machine instruction may require 100 cycles, so the computer is really doing 1,200,000 instructions per second. To speed up the computer, either increase the clock speed or shorten the instruction so that fewer cycles are needed to perform each machine instruction.
Clocks in computers are created by applying electric current to tiny quartz crystals which vibrate with a regular frequency when current is applied to them. This vibration can be used to raise and lower voltages in wires.
 


Section 7.8
Hardware DFAs

Fig. 7.8.1 shows a hardware DFA corresponding to the DFA given in Fig. 7.7.1.
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Fig. 7.8.1: Hardware DFA corresponding to Fig. 7.7.1
The heart of the DFA is its state register, which has flip-flops to store the binary representation of the current state number. Since there are four states, 2 flip-flops are needed. A 4x2 encoder is shown exposed at the top, feeding into the state register, which gets a new value only when CK goes high. It is this CK wire which is tied directly to the computer clock.
Notice that wire 0 is not hooked to any of the inputs going into the OR gates because to write a 0 into the state register, none of the wires should have a 1 on it. In fact, the 0 wire is redundant and could be omitted.
A 2x4 decoder takes the output of the state register and sets one wire to 1. Thus, each state has its own unique wire.
The conditional selection of the next state happens by ANDing the current state wire and hooking this to one of the input wires. For example, in Fig. 7.7.1, the DFA specifies that if we are in state 2 and "c" is true, then the next state should be 3. Thus, we AND state 2's wire with the "c" wire and hook that into the 3 input wire. However, 3 will get stored into the state register only when CK goes high at the next cycle.
The state wires coming out of the DFA are used to set the control wires, such as MAR-LD, PC-INCR, F0, A-MUX1, etc. Many of these control wires must be activated at several different times or by several different situations. AND and OR gates are used to filter and combine these situations that lead to setting the control wires.
Fig. 7.8.2 shows two different control wires, S0 and MAR-LD, and how they are set. S0 is only set when the SHR (shift right logical) is executed, and then only during the execute phase of the instruction. Thus, these two wires must be ANDed together in order to set S0. Recall that SHR comes directly from the instruction decoder, as shown in Fig. 7.7.3. S0 is 0 at all other times, so the one AND gate is sufficient to give it a value.
[bookmark: #Fig7_8_1][image: https://brahe.canisius.edu/~meyer/253/BOOK/ch7/GIFs/Fig7_8_2.gif]
Fig. 7.8.2: How state and opcode wires feed into control points
[bookmark: #Fig7_8_2]However, MAR-LD is used much more frequently, and in a variety of settings. It is used during the initial instruction fetch part of the machine cycle, which is represented by STATE0. It is also set during the operand fetch step, STATE3, but only when the instruction is one of those that calls for an operand out of memory, namely LOD, ADD, SUB, AND, OR, NOT. Hence an OR gate tells if any of these instructions are being executed, and the output of this gate is ANDed with STATE3 coming out of the DFA so that this is only done at the proper moment in the fetch/decode/execute cycle. This wire is ORed with other conditions, such as STATE0, because the MAR must be loaded at other times. This leads to the complicated circuit shown in Fig. 7.8.2, which is not complete.
Hopefully by now you are sufficiently impressed with the complexity of a computer, at least the CPU, which is the heart of the computer. I/O devices and buses are another matter entirely, and are full of their own Byzantine layer upon layer of complexity. However, computer hardware designers have striven to reduce the complexity to manageable levels by employing regularity at every turn. Mathematics also helps a great deal. For instance, DFAs are a purely mathematical construct that can be applied to many real-world situations, including design of the control unit.
In chapter 9 we will look at small programs written in CSC-1's assembler language just to get a feel for how real programs are put together from these incredible minuscule and simple-minded instructions.
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