Section 6.1
Data Representation

Obviously computers deal with numbers. But other types of data are encoded inside a computer's memory and processor circuits: sounds, colors, temperature levels, pictures, you name it. And all of these data are encoded using just 1s and 0s! In this chapter we learn the fundamentals of integer data representation and manipulation.
All digital computers use a variety of coding schemes to encode information, but almost all of these, except maybe for bitmapped pictures, depend upon storing numbers, usually integers. One example of a code that relies on integers is ASCII, the American Standard Code for Information Interchange which encodes characters. On page 2 is the full ASCII code for values from 0 to 127. The values 128 to 256 are reserved for special graphics characters.
To translate, just find and replace all letters with their coded sequence, using either the raw binary bit patterns, or the decimal number that corresponds to those patterns. For example, "Java!" would be:
   J           a           v           a           !
   74          97          118         97          33
   01001010    01100001    01110110    01100001    00100001
ASCII is just one of many codes developed for representing character sets; however it is so widely used that it is almost unthinkable to build a computer using any other code now. EBCDIC is another code that IBM mainframe computers use. EBCDIC stands for Extended Binary Coded Decimal Interchange Code. Other computer manufacturers had their own codes in the early days, such as CDC (Control Data Corporation) which had a 6-bit code.
A new code is becoming quite popular -- Unicode, which is an internationalized form of ASCII. All of the ASCII code is contained in Unicode. Since there are 16 bits in a single Unicode character, the total number of possible characters is 65,536. This allows other languages to include the special symbols for their alphabets.
ASCII, EBCDIC and other codes use a fixed sized for their codewords. Today's ASCII uses 8 bits per codeword, although its predecessor used only 7 bits. EBCDIC always was a 8-bit code. A codeword is the smallest chunk of information that is encoded using one of these systems, usually a single character or digit. Codewords are not broken up nor do they have any internal structure.
Here is the complete ASCII character set for the first 128 characters.
ASCII     Decimal       Binary       ASCII     Decimal         Binary
-----------------------------------------------------------------------
 NUL        0          0000 0000        @          64         0100 0000
 SOH        1          0000 0001        A          65         0100 0001
 STX        2          0000 0010        B          66         0100 0010
 ETX        3          0000 0011        C          67         0100 0011
 EQT        4          0000 0100        D          68         0100 0100
 EHQ        5          0000 0101        E          69         0100 0101
 ACK        6          0000 0110        F          70         0100 0110
 BEL        7          0000 0111        G          71         0100 0111
 BS         8          0000 1000        H          72         0100 1000
 HT         9          0000 1001        I          73         0100 1001
 LF        10          0000 1010        J          74         0100 1010
 VT        11          0000 1011        K          75         0100 1011
 FF        12          0000 1100        L          76         0100 1100
 CR        13          0000 1101        M          77         0100 1101
 SQ        14          0000 1110        N          78         0100 1110
 SI        15          0000 1111        O          79         0100 1111
 DLE       16          0001 0000        P          80         0101 0000
 DC1       17          0001 0001        Q          81         0101 0001
 DC2       18          0001 0010        R          82         0101 0010
 DC3       19          0001 0011        S          83         0101 0011
 DC4       20          0001 0100        T          84         0101 0100
 NAK       21          0001 0101        U          85         0101 0101
 SYN       22          0001 0110        V          86         0101 0110
 ETB       23          0001 0111        W          87         0101 0111
 QAN       24          0001 1000        X          88         0101 1000
 EM        25          0001 1001        Y          89         0101 1001
 SUB       26          0001 1010        Z          90         0101 1010
 ESC       27          0001 1011        [          91         0101 1011
 FS        28          0001 1100        \          92         0101 1100
 GS        29          0001 1101        ]          93         0101 1101
 RS        30          0001 1110        ^          94         0101 1110
 US        31          0001 1111        _          95         0101 1111
 SPACE     32          0010 0000        '          96         0110 0000
 !         33          0010 0001        a          97         0110 0001
 "         34          0010 0010        b          98         0110 0010
 #         35          0010 0011        c          99         0110 0011
 $         36          0010 0100        d         100         0110 0100
 %         37          0010 0101        e         101         0110 0101
 &         38          0010 0110        f         102         0110 0110
 '         39          0010 0111        g         103         0110 0111
 (         40          0010 1000        h         104         0110 1000
 )         41          0010 1001        i         105         0110 1001
 *         42          0010 1010        j         106         0110 1010
 +         43          0010 1011        k         107         0110 1011
 ,         44          0010 1100        l         108         0110 1100
 -         45          0010 1101        m         109         0110 1101
 .         46          0010 1110        n         110         0110 1110
 /         47          0010 1111        o         111         0110 1111
 0         48          0011 0000        p         112         0111 0000
 1         49          0011 0001        q         113         0111 0001
 2         50          0011 0010        r         114         0111 0010
 3         51          0011 0011        s         115         0111 0011
 4         52          0011 0100        t         116         0111 0100
 5         53          0011 0101        u         117         0111 0101
 6         54          0011 0110        v         118         0111 0110
 7         55          0011 0111        w         119         0111 0111
 8         56          0011 1000        x         120         0111 1000
 9         57          0011 1001        y         121         0111 1001
 :         58          0011 1010        z         122         0111 1010
 ;         59          0011 1011        {         123         0111 1011
 <         60          0011 1100        |         124         0111 1100
 =         61          0011 1101        }         125         0111 1101
 >         62          0011 1110        ~         126         0111 1110
 ?         63          0011 1111        DEL       127         0111 1111
In today's computers, 8-bit ASCII is used very widely, and since most computer manufacturers treat the 8-bit byte as the smallest addressable unit of memory, bytes and codewords are virtually synonymous. The measure of a piece of text in characters and bytes will be the same. For example, a standard page usually has around 80 characters per line (including blanks which are valid characters), and there are usually 66 lines per page. This gives 80×66 = 5280 characters per page. Since each character requires one byte, this would be 5280 bytes, or about 5.2 Kilobytes. (Remember that a kilobyte is 1024 bytes, so 5280÷1024 gives 5.15625, which, rounded, is about 5.2K.)
There is nothing magical about how ASCII or EBCDIC were developed. Somebody just assigned small integers to the printing symbols, such as "A" or "%". A logical choice would have been to assign 1 to A, 2 to B, and so forth, then 27 to the other characters that are not in the alphabet but are nonetheless important, such as ?, * and @.
Before the 8-bit byte became standard, there was no consensus on how large codewords should be. Using only capital letters of the English alphabet and digits, we get 26+10=36 codewords. Since 36 is not a power of 2, 6 bits would be needed anyway, so the remaining unused 6-bit patterns should be made useful. Various punctuation marks were assigned, such as ?, @, ", ', etc. 26 is 64, which means that there would 28 additional symbols in the coded alphabet (64-36=28). This is still not enough to include all the punctuation symbols commonly found on modern keyboards, so some things were left out, causing for hilarious consequences. For example, IBM 026 keypunch machines did not have < or > signs, so FORTRAN, developed in 1957, used .LT. and .GT., and still does to this day.
Expanding the code to 7 bits yielded 128 combinations. Now both uppercase and lowercase letters could be used, a big leap forward! Moreover, special control characters crept into the system. One of these is kind of obvious but strange nonetheless, the space or blank. It is the only character code which instructs printers and monitors not to display anything! Other control characters, such STX, EOT, BEL, and NUL had meanings specific to terminals and modems. When these I/O devices received these characters from the computer, they did various things, such as sound the "bell" (make a beep) or go into reverse video display mode. Later, networking systems used these same characters to signal the beginning and ending of a transmission, or to disconnect. ASCII and EBCDIC both have a plethora of these non-printing characters, and they can cause problems when inadvertently sent to a modem or a printer, making it hang up or print weird junk.
Though the assignment of characters to their codes could be totally arbitrary, certain assignments make it much easier to program certain things. For instance, all codes use an alphabetic ordering on letters. That is, the code for B is always numerically greater than A, the code for C is greater than B, and so forth. This makes it easier to sort on names and addresses than if the codes were arbitrary. However, which comes first in the code, lower case or upper case letters? And what is the ordering of the punctuation? There is no obvious preferred ordering so the codes diverge on this. They do, however, impose an ordering on the printable digits that mirrors their numerical relationships, so '1' is greater than '0', and so forth. Moreover, the code for '1' is exactly 1 greater than that for '0'. In ASCII '0' is 48, '1' is 49, '2' is 50 and so on.
An oddity exists in the EBCDIC code -- there is a break in the letter codes between 'j' and 'k' and again between 'r' and 's'. A similar break happens in the upper case region. Though the ordering is still in effect, the code for 'k' is not just 1 greater than that for 'j' and there are codes assigned to punctuation in between! This makes programming a bit inconvenient. For example, a C programmer can't just say:
if (ch >= 'a' || ch <= 'z') { ....
and expect this to work on an IBM mainframe due to the fact that there are other codes in between some of the letters. But like all seemingly irrational features of the world, this one harkens back to a historical consequence of the way the letter codes were arranged on old IBM punch cards. There were only 13 rows on punch cards: 10 for digits and 3 for special codes. When the arrangement of punched holes was translated into binary, the numbers came out to be noncontiguous -- there were gaps in between -- and so the odd holes in the EBCDIC code exist in order that the code can be compatible with ancient keypunches and cards!
 


Section 6.2
Binary numbers

Numbers in computers are usually of two types: integers and floating point (reals.) As in mathematics, integers may be negative or positive or 0. Oftentimes only positive integers are needed and these are called unsigned integers.
Integers are encoded using base 2 or binary. This is a positional representation system that is identical in concept to base 10 or base 8 or base 5. Each "digit" of a numeral (this is what we call a written representation of a number) is assigned to a place, or power of the base. Here is a binary number written out to show its powers of 2. [image: https://brahe.canisius.edu/~meyer/253/BOOK/ch6/INSERTs/GIFs/Ins6-1.gif]
To convert from binary to decimal, just write out the powers of 2 and add up those whose corresponding digit is 1. [image: https://brahe.canisius.edu/~meyer/253/BOOK/ch6/INSERTs/GIFs/Ins6-2.gif]
We write 1011010100012 = 289710 where the subscript indicates the base.
To convert from decimal to binary, subtract off powers of 2, and if the result is positive, write a 1. Otherwise write a 0. This method assumes that the highest power of 2 needed for this conversion is already known. Making a reasonable guess isn't hard if the powers of 2 are consulted. An alternate way, a straightforward algorithm, is to start with the 0th power of 2, 1, and subtract it. If the result is positive, guess higher. Continue this until a negative number is obtained, then back off to the previous power of 2.
Here is a table of some of the powers of 2:
               n                         n                           n
     n        2            n            2          n                2
   ------------------------------------------------------------------
     0        1           11          2048         22       4,194,304
     1        2           12          4096         23       8,388,608
     2        4           13          8192         24      16,777,216
     3        8           14        16,384         25      33,554,432
     4       16           15        32,768         26      67,108,864
     5       32           16        65,536         27     134,217,728
     6       64           17       131,072         28     268,435,456
     7      128           18       262,144         29     536,870,912
     8      256           19       524,288         30   1,073,741,824
     9      512           20     1,048,576         31   2,147,483,648
    10     1024           21     2,097,152         32   4,294,967,296
As an example, let's convert 54000 to binary. Looking at the table, we see that 54000 lies between 32768 and 65536, so we can start at 32768. With each subtraction decision, we mark whether we could subtract with a 0 or 1, as shown below:
     54000     Starting number to convert
    -32768     Can subtract 32768                1
 ---------
     21232     After subtraction
    -16384     Can subtract next lower power     1
 ---------
      4848     After subtraction
     -8192     Can't subtract                    0
 ---------
      4848     Leave the number alone
     -4096     Can subtract next lower power     1
 ---------
       752     After subtraction
     -2048     Can't subtract                    0
 ---------
       752     Leave the  number alone
     -1024     Can't subtract                    0
 ---------
       752     Leave the number alone
      -512     Can subtract 512                  1
 ---------
       240     After subtraction
      -256     Can't subtract                    0
 ---------
       240     Leave the number alone
      -128     Can subtract 128                  1
 ---------
       112     After subtraction
       -64     Can subtract 64                   1
 ---------
        48     After subtraction
       -32     Can subtract                      1
 ---------
        16     After subtraction
       -16     Can subtract 16                   1
 ---------
         0     After subtraction
        -8     Can't subtract                    0
 ---------
         0
        -4     Can't subtract                    0
 ---------
         0
        -2     Can't subtract                    0
 ---------
         0
        -1     Can't subtract                    0
 ---------
         0
This entire tedious process is carried out in detail as an example. The final binary numeral can be read off by lining up the 1s and 0s, starting from the top:
1101001011110000
Binary numbers might seem terribly inefficient since they seem to be a lot longer than decimal numbers. In fact, the binary equivalent of a decimal number will never be more than 3 times as long, when counting the actual digits. But computers do not see 1 and 0 the same as 4 or 5 or 7. The decimal digits would have be represented somehow using electricity, and though there are ways to do this, such as using ten different voltage levels, none are as simple or reliable as using off and on; hence the binary system.
 


Section 6.3
Signed binary numbers (integers)

The methods shown above give positive binary numbers for positive decimal numbers. Actually, they are numerals, but we will not quibble over philosophical distinctions, not when there's a computer to build!! The next problem to tackle is how to encode negative numbers.
There are three main methods of doing this, the first one being the most obvious and intuitive, called sign-magnitude form. Merely add an extra bit to the binary number to encode the sign. The most obvious encoding is to use 0 for + and 1 for -, probably because if the minus is rotated 90o, it looks like a 1. The one tricky point is that the maximum number of bits must be set and then the number must be padded out with 0s so that the minus sign is always in the same bit position. For instance, an 8-bit number must add a 9th bit for the sign, usually at the front. Thus, +1 becomes 000000001 and -1 is 100000001. Note the extra padding zeroes. If they weren't there, the representation for -1 would be 11, which looks like 3. In fact, there would be no way to tell between 3 and -1.
Here are some more positive and negative numbers using sign-magnitude form, using several different bit lengths:
number     4 bits     8 bits     12 bits
------     ------     ------     -------
0          0000       00000000   000000000000
1          0001       00000001   000000000001
-1         1001       10000001   100000000001
-15        can't do   10001111   100000001111
7          0111       00000111   000000000111
-7         1111       10000111   100000000111
8          can't do   00001000   000000001000
-8         can't do   10001000   100000001000
576        can't do   can't do   001001000000
-576       can't do   can't do   101001000000
Some values can't fit within the number of bits that are set for the numbers. For example, 16 can't be expressed in fewer than 5 bits. If one of the bits assigned to be the sign, the size of the numbers that can be encoded is restricted even further. Thus, a 4-bit sign magnitude form, as shown in the second column above, can only accommodate 3 actual bits of binary number, since one of the 4 is the sign. 1112 is 7, so 4-bit sign-magnitude form can only accommodate -7 to +7. 8-bit sign magnitude can only accommodate -127 to +127, since 01111111 is 127. What is the range of numbers if we are using 12-bits?
One strange thing about sign-magnitude form is that there are two values for 0. Using 4 bits, 0000 and 1000 both exist, although the second is -0. In real life, there is no -0, simply 0. Thus, one bit pattern is either meaningless or means the same as another bit pattern. If a computer would ever come up with 1000, or -0, as a result of a calculation, such as subtraction, it should convert it to 0000 just to be consistent and to ensure that it doesn't inadvertently think that 0 does not equal -0.
Another method of encoding negative integers is called 2's complement. This notation is more widely used than sign-magnitude because it is easier to implement subtraction. However, 2's complement is more difficult for humans to understand.
First, let's look at a simpler system called 1's complement. In 1's complement notation, negative numbers are formed by inverting all the bits of the positive form. Again, the size of the numbers must be fixed once and for all. Here are the same values as given above, only using 1's complement.
number     4 bits     8 bits     12 bits
------     ------     ------     -------
0          0000       00000000   000000000000
1          0001       00000001   000000000001
-1         1110       11111110   111111111110
-15        can't do   11110000   111111110000
7          0111       00000111   000000000111
-7         1000       11111000   111111111000
8          can't do   00001000   000000001000
-8         can't do   11110111   111111110111
576        can't do   can't do   001001000000
-576       can't do   can't do   110110111111
However, -0 still exists in 1's complement. It is 1111 in 4 bits, 11111111 in 8 bits, and all ones for any size bit pattern.
The nice thing about 1's complement is that a special subtraction circuit isn't needed. Instead, just add the negative of a number. We will not go through this process here because 1's complement is merely a stepping stone for 2's complement.
Virtually all modern computers use 2's complement to represent signed binary numbers internally. In the next section we will learn how to convert between 2's complement and decimal.
 


Section 6.4
Converting 2's complement numbers

The 2's complement form of a signed integer is one plus the 1's complement. That is, first get the 1's complement by flipping all the bits (changing 1s to 0s and 0s to 1s) and then add 1, using binary addition with carries.
Remember the following mantra:
	Flip all the bits and add 1.


Like 1's complement, the number of bits must be fixed and you must pad out the number if it is too short. If the number is too long for your fixed size, then you can't represent it using 2's complement of that bit-width.
To illustrate, let's work through converting -19 to 2's complement, using a fixed size of 8 bits.
Step 1:
    Get the value in binary.                19 is 10011.

Step 2:
    Pad out to 8 bits.                      00010011

Step 3:
    Flip all the bits.                      11101100

Step 4:
    Add 1.                                  11101100
                                                  +1
                                            --------
    This is it!                             11101101
Here's another, a little more interesting one: -32 (again using 8 bits).
Value of +32 in binary                      100000

Pad out to 8 bits                         00100000

Flip the bits                             11011111
Add 1                                           +1
                                          --------
The answer                                11100000


Let's see what happens when we convert -0 to 2's complement.
Value of 0 in binary                             0

Pad out to 8 bits                         00000000

Flip the bits                             11111111
Add 1                                           +1
                                          --------
The answer                                00000000
In this case, the carry propagation never stops, but travels way behind the leftmost place. Since we can only store 8 bits, we throw away this 9th bit, and get 00000000. Thus, 0 has but one unique representation in 2's complement, and there is no separate -0 as there is in 1's complement.
Remember that a positive integer does not need to be flipped, although it must be padded with 0s on the left end to achieve the set number of bits. Thus, +19 in 8-bit 2's complement is 00010011. A common mistake that student make is to flip and add 1, even if the number is positive. This is definitely wrong!
Following are the values given above in 2's complement, using various bit sizes.
number     4 bits     8 bits     12 bits
------     ------     ------     -------
0          0000       00000000   000000000000
1          0001       00000001   000000000001
-1         1111       11111111   111111111111
-15        can't do   11110001   111111110001
7          0111       00000111   000000000111
-7         1001       11111001   111111111001
8          can't do   00001000   000000001000
576        can't do   can't do   001001000000
-576       can't do   can't do   110111000000
There are few interesting things to notice about 2's complement numbers. First, all negative numbers will have a 1 in the first bit, just like sign-magnitude form. Thus it is immediately obvious if the number is negative or not. Second, some negatives are easy to spot. -1 is always all 1s, no matter how many bits long the numbers are. If we were working with a new 64-bit SPARC II chip, we would know that -1 is
          1111111111111111111111111111111111111111111111111111111111111111
without even trying to convert!


-2 is easy, too, since it is all 1s except for a final 0. -2 in 8 bits is 11111110, in 12 bits it is 111111111110. -4 is all 1s except for the final two 0s. In fact, there is an easy to spot pattern. -1 is always all 1s, which would normally be the largest unsigned binary number for n bits. From this point, the negative numbers count down or backwards.
Here is the complete list of representations for 3 bits using 2's complement:
Bit pattern     Unsigned     2's complement
-------------------------------------------
   100             4              -4
   101             5              -3
   110             6              -2
   111             7              -1
   000             0              0
   001             1              +1
   010             2              +2
   011             3              +3
Notice that
· all negatives have a 1 in the first bit.
· there is only one 0
· all positive numbers are the same bit patterns for both unsigned and 2's comp.
· there is one more negative number than positive numbers (4 negs, 3 positives).
· the absolute value of the smallest number (4 in this case) is about half of the absolute value of the largest unsigned number (7). In fact, it is half of the largest unsigned number plus 1 (7+1=8).
· the absolute value of the smallest negative will always be 1 greater than the largest positive.
· the total number of negative numbers, positive numbers and 0 is always the same as the total number of unsigned numbers, which is the largest unsigned number plus 1.
These characteristics are true of 2's complement systems no matter how many bits there are. Let's examine a 16-bit system for comparison. We can determine that the largest positive number is 0111111111111111 which is 32,767. (An easy way to determine this is find 215 and subtract 1.) Thus we know the smallest negative is -32,768. There are 65,536 different numbers. The largest unsigned number will be 65,535.
Suppose that we are given a bit pattern 1001011100011110, which is 16 bits long. What is this number? Well, it could be an ASCII 2-byte character string! Or it could be an unsigned integer, which would be 38,686. But it might also be a sign-magnitude integer, in which case it would be -5918, or a 1's complement which would be -26849, or a 2's complement, which would be ... Well, how do we find out what it would be?
The answer is quite simple. A given bit pattern may be interpreted in a variety of ways, and we need to be told somehow what the interpretation is before we can correctly use it.
Given a bit pattern that you are told is a 2's complement number, you can find out its decimal equivalent in the following way. If the first bit is 0, then the number is positive and you simply convert the binary number to decimal. If the first bit is 1, the number is negative and we negate it to find its absolute value, since -(-x) = x. To negate any 2's complement number, Flip all the bits and add 1.
     1001011100011110     (original)             ??

     0110100011100001     (flip all bits)
                   +1     (add 1)
    -----------------
     0110100011100010     (2's complement)      26,850
Since the number was original negative, the decimal equivalent of 1001011100011110 is -26,850.
 


Section 6.5
Computer arithmetic

If we know how to add two unsigned binary numbers together, and how to convert from 2's complement to decimal, we almost know everything about computer arithmetic for integers. Subtraction is done by negating the second number and adding it to the first. Multiplication is done by repeatedly adding one of the numbers to an ongoing sum while counting, and the division is done by repeatedly subtracting one of the numbers from the dividend while counting.
Let's go through some examples using 8 bit 2's complement arithmetic. First, let's try adding together two small positive numbers:
  0 0 1 1 0 1 0 1     +53
+ 0 1 0 0 0 1 1 1     +71
-----------------    ----
  0 1 1 1 1 1 0 0     124
So far so good. That was easy. Now what about
  0 1 0 1 1 1 1 1     +95
+ 0 1 0 0 1 0 0 1     +73
-----------------    ----
  1 0 1 0 1 0 0 0     168   ???????
But our rules above said that whenever the first bit of a 2's complement number was 1 then the number was negative, so we added two positives, 95+73, and got a negative number?
If we recall our observations, we see that the range of numbers in 8-bit 2's complement is -128 to +127. Thus, we get screwy answers when we add numbers that are too big and which cause the real sum to be larger than what we can represent. This is called overflow.
Notice that if we treated the above addition as unsigned numbers, everything is fine because 168 is 10101000, as long as we are looking at it as an unsigned number and not as a 2's complement number.
Now let's tackle adding two negatives:
    1 0 1 1 0 1 1 1     -73
  + 1 1 1 0 1 1 1 1     -17
  -----------------    ----
  1 1 0 1 0 0 1 1 0     -90
Again, if there is a final carry out, it gets thrown away. Everything works out fine and we get a negative answer. Remember that this will be true if our answer does not exceed -128.
What if we look at these as unsigned numbers?
  1 0 1 1 0 1 1 1     183
+ 1 1 1 0 1 1 1 1     239
-----------------   -----
  1 0 1 0 0 1 1 0     422
But 10100110 is only 166, not 422, so another form of overflow occurred. This has to do with throwing away that final carry out. If we had kept it, we would have had 110100110, which is 422.
 


Section 6.6
Condition Codes

When a program does arithmetic, it often has to make decisions based on the results: whether overflow occurred, if the result is 0 or negative, if the result is positive, and so forth. Thus, most computers have four bits coming out of the adder which give this kind of information. These are:
	Carry bit
	C
	if there was a final carry out, this bit is 1. This signals overflow if the two operands are unsigned.

	Negative bit
	N
	if the result of the addition is negative assuming 2's complement, this bit is 1.

	Overflow bit
	V
	if there was an overflow after adding two 2's complement numbers, this bit is 1.

	Zero bit
	Z
	if the result of the addition is 0 (all 0s), this bit is 1.


These bits are computed in the following ways. First, the carry bit is the final carry out of the adder circuit. It also stands for overflow when the two values that were added are considered to be unsigned binary numbers, not 2's complement signed binary numbers. Thus, the C bit is sometimes called unsigned overflow.
Next, the negative bit is nothing more than the output of the MSB (most significant bit) of the adder.
The zero bit indicates whether the result of addition is 0 or not. The computer feeds all the outputs of the adder into a big NOR gate (or a cascaded series of ORs followed by a NOT). If any wire has a 1, the output is 0. But if all the wires have 0s, the output of the NOR is 1. The use of 1 to indicate "zero" is a bit confusing since we might expect 0 to be on the 0 wire. However, think of 1 as true and 0 as false. So if Z is 1, then the Z condition is true, namely that the output of the adder is 000...0.
The overflow bit is the hardest to understand, since it is the exclusive or of the final carry out (the C bit) and the carry out of the second to last bit. Another way to compute this is to note that overflow could only occur if both addends had the same sign. If the N bit of the result is different from the sign of the addends, then overflow has resulted. It is possible to show that these two conditions are equivalent.
Fig. 6.6.1 shows the adder using the box diagrams of Chapter 4 and how the four condition bits CNVZ are created by running the outputs of the adder through various gates, as described above.
[image: https://brahe.canisius.edu/~meyer/253/BOOK/ch6/GIFs/Fig6_6_1.gif]
Fig. 6.6.1: Adder showing the formation of CNVZ bits
[bookmark: #Fig6_6_1] 


Section 6.7
Shifts

Another circuit, called the shifter, is extremely important. Shifters simply copy their input wires to their output wires, making a slight permutation of the values, usually displacing the output one bit either to the left or the right. Suppose that we had an 8-bit register and ran its value through a 1-bit left shifter. If the value is 10101101, the result would be 01011010. The leftmost bit is lost, dropped into the proverbial "bit-bucket" (which has an infinite capacity) and a 0 is inserted at the right end. If the shift were 1 bit to the right, the result would be instead 01010110. Again a 0 is inserted at the end from which the shifting starts.
Fig. 6.7.1 shows a circuit that performs a 1-bit right shift or a 1-bit left shift. Note the two wires that are connected to logic 0 all the time, which are used to insert those 0s at the ends.
[image: https://brahe.canisius.edu/~meyer/253/BOOK/ch6/GIFs/Fig6_7_1.gif]
Fig. 6.7.1: 1-bit right and left logical shift circuit;
if SHR=0 and SHL=0 then the input is copied to the output without shifting
(note the bubble inputs to the center AND gates; remember these are abbreviations for NOT gates).
[bookmark: #Fig6_7_1]The shifts described above are called logical shifts and can be 1, 2 or more bits, although it is uncommon to see a shifter than can shift more than 4 bits at a time. Most computers make do with 1-bit shifters and do several shift instructions in a row in order to accomplish a multi-bit shift.


There are two other shifting types besides logical shifts. Here is a complete list. All of these can be 1, 2, or more bit shifts and can be left or right.
	logical shift
	0s are inserted at the end, bits drop off and disappear from the opposite end

	circular shift
	bits taken off one end are inserted at the other

	arithmetic shift
	this is like a logical shift except the sign bit is always copied into the output.


Circular shifts are sometimes called rotating shifts because they form a kind of circle of bits. The value of a register is not lost if it subjected to a series of circular shifts. In fact, if an n-bit register is circularly shifted n times, it will wind up with the original value. This is not true with logical shifts since bits are constantly getting lost at one end and 0s are inserted at the other. To set an n-bit register to 0, subject it to n logical shifts, either left or right.
Following are a number of shifts:
  Original     1-bit left       1-bit right      1-bit left    1-bit right
                logical          logical          circular      circular
--------------------------------------------------------------------------
  10010111     00101110         01001011         00101111      11001011
  00000001     00000010         00000000         00000010      10000000
  10000000     00000000         01000000         00000001      01000000
  11111111     11111110         01111111         11111111      11111111
  00011000     00110000         00001100         00110000      00001100
Notice that if we treat the bit strings as unsigned integers, then left logical shifts seem to perform multiplication, while right logical shifts perform division. For example, 00010111 is 23, and 00101110, the result of a left logical 1-bit shift, is 46. If we shift 00010111 two bits and get 01011100, the value is 92, or 23x4. Thus, the number of shifts is the power of 2 by which the unsigned number is multiplied. However, if 1s are lost off the left end, the result will be less than the original number, which signifies yet another form of overflow. In all cases, overflow is a result of not having enough bits to store a value, and it always occurs in this world of finite machines.
Right logical shifts are divisions by 2, but it is integer division with truncation. For example, 23/2 is 11.5, or just 11 if we truncate, and indeed 00001011 is 11. Right logical shifts can never result in overflow because the new number resulting from the shift or division is always smaller than the original. But information is lost nonetheless because decimal places are eroded away until the result is 0.
The arithmetic shift seems a bit stranger at first until we realize that the idea is to preserve the sign of 2's complement numbers, which is useful when using shifting to emulate multiplication and division of signed integers. To do an arithmetic shift, remember the original value of the MSB (most significant bit, which is the leftmost bit), then do a logical shift, inserting 0s on the left or right end, depending upon whether the shift is right or left. Then copy the original sign bit into the MSB. Here are some examples using 8-bit words:
Left arithmetic shift  Original value  Right arithmetic shift
-----------------------------------------------------------------
   01011010               00101101            00010110
   11110100               11111010            11111101
   10111010               11011101            11101110
   10111010               10011101            11001110
An odd thing happened in the last example. 10011101 is -99 in decimal if we treat 10011101 as an 8-bit 2's complement number. However, 10111010 is -70, which is not -99 x 2! But wait! -99 x 2 would be -198, yet we can only represent negative numbers down to -128. So arithmetic shifts are subject to that old nemesis, overflow.
A rather whimsical way of viewing arithmetic right shifts is to imagine the bit string as encoded on a rubber band and the left end is anchored to a wall. Pull as we might, we cannot dislodge the MSB from the wall, but it just stretches. So the 1s copy themselves into bit places to the right, as do 0s if the number were originally positive. In a similar vein, an arithmetic left shift is like pushing a piece of paper into a wall. It crumples up against the wall, the left end of the bit string, and does not change the wall.
 


Section 6.8
Bitwise Logical Operations

Most computers provide machine instructions to perform AND, OR and NOT on strings of bits. The Boolean operations are applied independently to each bit, which is why they are called bitwise. Below are some examples using 8-bit registers. The C operators for bitwise AND (&), bitwise OR (|) and bitwise NOT (^) are employed.
[bookmark: _GoBack]
   10011100     1011100    1011100
 & 01101010   | 0110101   ^
-----------   ---------   --------
   00001000     1111101    0100011
Oftentimes these bitwise operations are used for data manipulation tasks that are only remotely connected to logic. AND is often used as a mask or filter, only allowing bits whose positions are 1s in the other operand to be viewed. OR is often used as a collector of bits to combine several different data bits into one mask. NOT is used to compute the 1's complement.
Performing the OR of a string of bits is harder. One could logically shift the value and OR together all of the bits as they pass through the MSB, which is the N bit. Another way is to simply ask if the decimal value of the bit string is 0. If it is then there are no 1s anywhere in it. If it is not 0, then there is at least one 1. AND of a string of bits is similar. If the string is -1 (all 1s) in 2's complement then the AND of this string is 1. But if it is any other value, the AND is 0, since there is at least one 0.
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