Section 15.1
Small is Beautiful

In the early 1970s, many advocated smaller, fuel-efficient cars after the Arab Oil embargo of 1973 terrified car-addicted America. The Volkswagen bug, already a fixture on the American highway, gained further praise as U.S. car manufacturers struggled to relearn how to build cars. E. F. Schumacher's 1973 book "Small is Beautiful: Economics as if People Mattered" was the bible of this trend in technology and economics. As a result of this tumultuous decade, cars are generally much smaller today than they were in 1969.
Computers are smaller, too, but instead of having less power than their 1960s cousins, they have much more. However part of this increase in power, expressed both in speed and memory size and computational complexity (for instance almost all chips today can do floating point operations in addition to integer), has been due to a "back to basics" movement that said "small is beautiful," especially small instruction sets. We call this philosophy of computer architecture RISC for Reduced Instruction Set Computers.
RISC has always been around. The very first digital computers would qualify as RISCs. However, the term came into existence in 1980 when a design group at Berkeley led by David Patterson and Carol Sequin created a VLSI chip which they called the RISC I. In 1981, a group at Stanford led by John Hennessy created a similar chip called the MIPS (Microprocessor without Interlocking Pipe Stages.)
IBM got in on the act with a minicomputer called the PC/RT, which was descended from a much neglected computer that IBM built in 1975 called the 801. SUN Microsystems developed the RISC I chip further and came up with the SPARC (Scalable Processor Architecture) which was very successful. Newer RISC chips include the PowerPC which is built by a several vendors and used in both newer IBM products and all new Macintoshes. Intel, struggling to maintain backward compatibility with its huge installed base of x86 chips, is now combining both CISC and RISC features in its 80786 and Pentium Pro.

Section 15.2
What is CISC, and why is it so bad?

We should first back up and talk about CISC -- what it is, where it came from, and why people are now fleeing from it like rats from the Titanic.
CISC stands for Complex Instruction Set Computer and is typified by the VAX-11 computer. This highly successful line of minicomputers, sold by DEC starting in 1977 and continuing for many years, had a huge instruction set: 303 in the 11/780 model. These instructions provided for many different options and had a large toolkit of addressing modes supposed to make it easier to program and to write compilers for it. Though the VAX seemed to have it all, it lacked one essential thing -- speed.
From the first ENIAC down to the present, perhaps the most important parameter of a computing machine is its speed -- how much can it do in a second? This quantity is vital since the extremely complex tasks which we want to solve using computers require billions of operations every minute, sometimes every second, and we don't have all year to wait for the results. Humans are limited by one thing -- a rather short and definite lifespan, thus the need for faster computers.
In 1964 when the IBM 360 series was introduced, microprogramming was seen as the wave of the future. Microprogramming is the technique by which a machine instruction is not executed by a logic circuit directly but is instead interpreted by a small program in a much simpler computer. Each machine instruction, such as ADD, STORE, and JUMP, is a subroutine call, invoking a subprogram in a secret memory called the control store. The microinstructions of this more primitive machine are similar to RTL (register transfer language).
Back in the 1960s and 1970s, memory was relatively slow and limited in capacity. Magnetizable doughnuts of ferrite were strung on gold wires to form RAM of most computers. Even though VLSI DRAM memories became common in the late 1970s, it still made sense in terms of speed and economics to put most of the complexity into the microcode. Fetching microinstructions from the microprogram control store was almost as fast as getting data out of registers, since a very high speed ROM was utilized. Programs would be smaller if a machine language instruction corresponded to a bunch of the smaller, simpler instructions of the previous generations of computers.
Thus, almost all computers became microcoded, including the early microprocessors of the 1970s which were the progenitors of today's Intel x86 and Motorola 68000 series of engines powering our PCs and Macintoshes. Only supercomputers and some high-performance mainframe clones were hard-wired. Gene Amdahl formed a company called Amdahl computers which ran IBM 360 programs directly (we say they were binary compatible since they could run each other's binaries) except Amdahl's were hard-wired, making them faster.
In the late 1970s, VLSI fabrication became cheaper and easier. University students and professors were experimenting with custom chips and noticed that several key parameters had shifted since the 60s, such as memories getting smaller, faster, and cheaper. Borrowing some techniques that had heretofore been seen only in supercomputers, such as instruction pipelines, they built "toy chips" that had only a few instructions, only 1 or 2 addressing modes, and lots of speed. The big players, IBM, DEC and others, were flabbergasted at their success.
But "toy" systems often turn out to be Davids that slay Goliaths. UNIX itself is another such minimal system designed on a cast-off PDP-7 minicomputer by two disgruntled employees in 1969 that later became the most widely used operating system. It is ironical to think that all of today's personal computers were seen originally as toys for hobbyists -- even IBM didn't really take its PC seriously when it was introduced in 1981, as Paul Carroll reports in the engaging history "Big Blues" (Crown Publishers, 1993).
Back to the main story, CISC had a hard time incorporating some of the tricks that RISCs were borrowing from other niches of computerdom, such as huge register arrays, pipelining and out of order instruction issue and execution. CISC computers had more or less exhausted their evolutionary line -- they had gone about as far as they could go -- so they bowed out to newer, smaller, faster RISCs.
But the investment in CISC is considerable, both in terms of number of computers that still have a CISC processor (this text is currently being written on a Macintosh PowerBook 190, which has a Motorola 68040 chip), and in terms of programs, instructional books, and people training. These are not easy to change and certainly can't be scrapped overnight. Though the trend is to go with newer RISC architectures, some chips provide features of both CISC and RISC in order to be backward compatible. This is the direction that Intel has been taking with the Pentium II and the Pentium Pro.
Looking into the future, we see RISC evolving and changing. RISCs are getting "fatter" as more instructions are added and more mechanisms are included. This is called creeping featurism and is almost irresistible for computer people. Some wits have quipped, "If a program works, it will have to be changed!" which could equally apply to a chip.
Two things stand out in the half-century long history of computing. First the basic von Neumann computer has hung on admirably for a long time and promises not to die tomorrow. Second, old ideas often come back and find a new life, especially when whatever obstacles were holding them up melt away.

Section 15.3
Essential Features of RISC architectures

It is an ironic thing that the feature which gave its name to the architecture, namely a smaller set of instructions, really has little to do with the true nature of RISCs. The number of instructions is not really at issue, although early RISCs did have far fewer instructions than their CISC competitors. Today's RISCs are growing, but the other essential features of RISC remain intact. Many early microprocessors which were microcoded had few instructions but are still considered CISCs.
So exactly what sets RISC apart from CISC? The following list is fairly standard among authors:
1. There is no microcode. (Perhaps the most important item.)
2. Instructions take only one cycle, one time around the main data path through the accumulator and shifter.
3. All operands are kept in registers, rather than memory. Usually there is a large number of registers, often hundreds.
4. The only instructions which deal with data in memory are LOAD and STORE. (Arithmetic instructions such as ADD, SUB, etc. cannot directly access main memory, only registers.)
5. Instructions all have the same length, usually 4 or 8 bytes.
6. There are only 1 or 2 (or at most a few) different addressing modes.
7. There are only 2 (or at most a very few) data types: definitely integer and floating point, but there is not the multiplicity of different sizes, nor are there data types like packed decimal.
8. Pipelining and caching are used to speed up the basic machine.
9. Complexity is moved from the hardware into compilers.

Section 15.4
The main data path

Fig. 15.4.1 is a schematic of the heart of every RISC computer, called the main data path, because it represents the circuit around which data runs: out of one or more registers, through the ALU and shifter, and back into a register. (The word circuit derives from a Latin word meaning "it runs.")
[image: https://brahe.canisius.edu/~meyer/253/BOOK/ch15/GIFs/Fig15_4_1.gif]
Fig. 15.4.1: Main data path
[bookmark: #Fig15_4_1]It is this main data path that is optimized for speed, and all RISC instructions are supposed to represent operations that happen on the main data path, such as ADD, OR, and MOVE. If it can't be done on the main data path in one cycle, then it isn't a RISC machine instruction.
A case in point is integer multiplication and division. We studied these operations in Chapter 9, particularly multiplication, which is done by repeatedly shifting and adding. When 32-bit multiplication is performed, it requires some multiple of 32 cycles around the main data path, each time shifting the multiplier, inspecting its right end bit, and if it is 1, then adding the multiplicand to the product, which is then also shifted. This counts up to at least three circuits around the main data path. 32×3 = 96 so a general integer 32-bit multiplication takes at least 96 laps around the track!
Some computer scientists study real programs to determine what kinds of characteristics they have so that hardware designers can build machines specifically suited to those characteristics. One surprising observation is that general multiplication is seldom needed! Most multiplications can be replaced by left shifts because what is being multiplied is a power of 2. Other multiplications can be replaced by a combination of shifts, additions and subtractions. The compiler is expected to look for these and replace general multiplication with longer sequences of very fast instructions, instead of using one very slow multiplication instruction. For example, multiplication by 3 can be replaced by a left shift (multiply by 2) and then an addition:
ax3 = a*2 + a
When we compare 96 cycles through the main data path with just 2 (one shift and one addition), we find an enormous savings for the case of multiplication by the number 3.
Here are a few other tricks for replacing multiplication by shifts, additions and sometimes subtractions. Remember that any multiplication by a power of 2 is done by 1 or more left shifts. Some shifter circuits are able to shift 1, 2, 3 or more places at a time, obviating the need to run the data through the main path more than once.
ax5 = ax4 + a 2 shifts, 1 addition
ax6 = ax4 + ax2 3 shifts, 1 addition
ax7 = ax8 - a 3 shifts, 1 subtraction
ax14 = ax16 - ax2 5 shifts, 1 subtraction
There is a price to be paid, as always, and that is in the compiler, where a larger amount of time is needed to analyze the situation and replace multiplication with the appropriate combination of shifts and adds (subtractions take the same amount of time as adds). If the compiler is 10% slower, yet produces code that is 15% faster, it is worth it. Even if the executable program is only 5% faster, the extra compiler time is made up after running the program only a few times. The savings is much more dramatic if the program is used thousands of times for every compilation.
Compiler technology is mature. From the very beginning (about 1957, for the first FORTRAN compiler) producing good machine code has been important. Oftentimes, the first pass of the compiler quickly produces code using simple algorithms, code that is not terribly efficient. Then a subsequent pass looks through the code and improves it. This is erroneously called optimization by some compilers because it doesn't always produce the best code, but usually it produces better code. Though most code improvers make a faster program, some can be asked to produce memory efficient code, even if it means that slower algorithms must be used.
A trade-off exists in compiler code generators. Running the code improver may produce a slightly faster program, but it may take a long time to run the code improver. Sometimes it produces much better code, but the program will only be run once, as is often the case with student programs or programs still in the early stages of development. It is not a wise use of computer time to use the code improver, but when the final executable will be frequently run, such as the compiler itself! or operating system routines or commands, then it is very wise to spend quite a bit of time eking the last morsel of speed out of the code. Think of it as using a high-speed monorail train to go to the corner pizza parlor or to go across the continent.

Section 15.5
Load and Store Architecture and instruction formats

RISC machines keep all intermediate results and operands in registers and only infrequently bother the slower main memory. In older CISC computers, it is possible to specify a memory word as an operand in an instruction. However, RISC machines disallow memory operands from all but two instructions, LOAD and STORE. JUMP instructions also have memory operands because they specify locations of memory, but that is a different matter.
Since memory operands are not allowed in any instructions except load and store, it is possible to use 3-address code, which is easiest for a compiler to create. The operands are register numbers, and since there are many fewer registers than memory locations, the register "addresses" are much smaller. The SPARC, a famous RISC chip used by SUN, has 32 active registers at any given moment, so a mere 5 bits are needed to specify a register.
Fig. 15.5.1 shows a typical RISC instruction layout:
[image: https://brahe.canisius.edu/~meyer/253/BOOK/ch15/GIFs/Fig15_5_1.gif]
Fig. 15.5.1: Typical RISC instruction format
This adds up to only 22 bits, which easily fits into a 32-bit integer. It accommodates 128 different instructions (27) and could even use 6 or 7-bit register numbers.

Some RISCs allow for one of the operands to be an immediate value in which case the extra bits are used for that, along with the register address for, say, source register 2, as shown in Fig. 15.5.2:
[bookmark: #Fig15_5_1][image: https://brahe.canisius.edu/~meyer/253/BOOK/ch15/GIFs/Fig15_5_2.gif]
Fig. 15.5.2: Immediate and register operand modes require 2 different instruction formats;
numbers are the bit widths of fields except for the 1-bit immediate specifier,
where the actual values in the field are give (0 and 1)
This requires an extra bit to be able to indicate whether the bits used to designate the second source register are now instead to form the immediate operand.
Having multiple instruction formats is contrary to the design philosophy of RISC computers, which strives to keep everything uniform and simple, but immediate values are so common and speed the computer up so much, also freeing a register from having to store the data value, that they are a common concession. After all, design philosophies are merely guidelines, not rigid commandments.
For LOAD and STORE instructions, there is a different format, one that allows a memory address to be specified along with one register, which serves as the source for STORE operations and the destination for LOAD operations. Fig. 15.5.3 gives the format:
[bookmark: #Fig15_5_2][image: https://brahe.canisius.edu/~meyer/253/BOOK/ch15/GIFs/Fig15_5_3.gif]
Fig. 15.5.3: LOAD and STORE instruction format
The instruction
LOAD r7,r5+897
would put 7 into the destination register bits and 5 into the base address bits. The number 897 would be encoded in 15 bits and stored in the offset field. At run time, the computer calculates the memory address by adding the 32-bit value in r5 to 897 to come up with the effective address. If it is a LOAD instruction, the 32 bits at this memory slot would be copied into r7. If it is a STORE instruction, the 32 bits in r7 would be copied into memory at this address.
However, there is a problem. Most modern RISC computers use byte-addressable memory and 32-bit addresses. They also use 32-bit integers and 32-bit instructions. That is, one complete instruction fits within 4 bytes. Due to pipelining, it is very important that instructions be the same size so that the instruction fetch circuitry doesn't have to guess or do any decoding to get the next instruction; it just fetches the next 4 bytes. But how can a 32-bit address fit inside a 4-byte instruction? The opcode would have to be 0 bits long!
One commonly used way around this problem is to use base+offset addressing, where a full 32-bit address is formed by adding an offset (always less than 32 bits) to the 32-bit value that is residing in a register.
Even if base-offset addressing is used, it is still necessary to put a full 32-bit address into a register, and it cannot be put in with only one instruction. The SPARC assembles the address in two instructions. First, the top 22 bits of a register are set by the SETHI (set high) instruction, with the bottom 10 bits zeroed out. Then base+offset addressing can be used for the actual LOAD and STORE instruction.
Fig. 15.5.4 shows the format of SETHI that could be used with our hypothetical computer. Since the opcode is 7 bits long and the destination register requires 5 bits for its number, 32-7-5 = 20 bits are left for the immediate value.
[bookmark: #Fig15_5_3][image: https://brahe.canisius.edu/~meyer/253/BOOK/ch15/GIFs/Fig15_5_4.gif]
Fig. 15.5.4: SETHI Instruction format for our hypothetical RISC computer
These 20 bits are the upper portion of the address. The lower 12 bits can easily fit into the immediate operand field of the instruction format shown in the bottom part of Fig. 15.5.2, which is actually 15 bits wide. The top 3 bits of this offset might always be 0.

Fig. 15.5.5 explains how the 32-bit address is broken apart and built up in two steps.
[bookmark: #Fig15_5_4][image: https://brahe.canisius.edu/~meyer/253/BOOK/ch15/GIFs/Fig15_5_5.gif]
Fig. 15.5.5: Use of the SETHI instruction to build a full 32-bit address
[bookmark: #Fig15_5_5]The decimal value of the top 20 bits of the address, which is the operand of SETHI, is really the address divided by 4096. In binary, this is more easily conceived of as splitting the address between the 12th and 13th bits, counting from the right end.
Whether a single byte, two bytes, a full 32-bit integer or another size of data is loaded into r7 is another matter. The SPARC has separate LOAD instructions to copy single bytes, halfwords (2 bytes), words (4 bytes) or double words (8 bytes) from memory to the destination register.
Usually the base address will not change frequently, meaning that most LOADs only need one SETHI instruction. For example, one register, usually designated as SP, contains the address of the top of the run-time stack. Unless the stack grows very quickly, the same value of SP can be used with different offsets to access 212 or 4096 different bytes of memory before having to modify the SP's contents. It may also be the case that the full 15 bits of immediate operand are added to the base register, not just 12, which multiples the size of addressable memory by 8.

Section 15.6
Delayed LOAD and STORE

Most RISC computers use pipelines to speed up the basic von Neumann architecture. Instruction pipelines are usually quite shallow, i.e. have few stages, because the lengthy process of getting the operands and storing back the results is sliced out due to the use of the registers. The big time delay, outside of actually running the data through the ALU and shifter, is getting the instructions from main memory in the first place.
Fig. 15.6.1 shows a typical RISC instruction pipeline. Most instructions do not reference memory, so they only need two stages: instruction fetch (from memory) and instruction execution. However, LOAD and STORE instructions are slower because accessing main memory takes longer than running through the main data path. Thus, any LOAD and STORE instruction must be kept in the pipeline for an extra stage. In Fig. 15.6.1, the L and S instructions are a LOAD and a STORE.
[image: https://brahe.canisius.edu/~meyer/253/BOOK/ch15/GIFs/Fig15_6_1.gif]
Fig. 15.6.1: RISC instruction pipeline showing extra delay of Load and Store Instructions
[bookmark: #Fig15_6_1]Why does fetching instructions from memory only require one time unit whereas loading a data value from memory take two? The execution stage, where the data load from memory occurs, includes decoding and moving the values through the ALU/shifter. If the memory is fast enough to just barely do a load in one time unit, it may not have any excess time for the decoding and moving, necessitating a time extension for the execution stage. Another reason is that instructions usually come out of a fast instruction cache, rather than main memory, so getting the next instruction in the instruction fetch stage is nowhere near as slow as going to main memory.
LOADs account for 20% of all instructions in a typical program and STOREs are less frequent than that, so most of the instructions can execute in just two time units, not three. The occasional LOAD and the occasional STORE bring down the average, but not by much.
Since every LOAD and every STORE requires three time units, at least in this version of RISC, a problem develops when the instruction following the LOAD is not a LOAD itself. In Fig. 15.6.1, this is I4, which completes during time unit 5, the same time that LOAD is finishing its work and storing the value into the destination register. What if I4 references that same register as an operand? Then there is trouble. For example:
LOD r4,r5+7893
ADD r3,r2,r4
(The destination register will always be the first operand.) In the above code segment, I4 is an ADD which attempts to use the value just fetched from address 7893 (this is the offset from the high portion of the address which is kept in r5). But the timing is too precariously narrow to trust that value from memory is latched into r4 soon enough for the next instruction to get it out as an operand value for the ADD. There might also be a conflict with the register buses.
In situations like this, the compiler is called into action again. It is asked to find another instruction near the LOAD which can swap places with it and fill in this delay slot safely. If not, then a NOP (null operation) instruction is inserted after the LOAD so nothing of any consequence happens while the LOAD completes.
STORE instructions can also cause problems when the register value they are sending to the main memory to store is getting changed by the next instruction. For instance:
STO r4,r5+7893
ADD r4,r2,r1
If r4 has to stay stable for that third time cycle while the STORE completes, then there will be trouble because the ADD instruction will be executing during that same time cycle. However, in some computers the STORE sends the value to the MBR early in the process, so the original source of the value, r4 in this case, could be changed. However, another STORE probably could not follow directly on the heels of the first STORE because it would then try to change the MBR which needs to be stable.
Thus, even if the above sequence of STO, ADD doesn't cause problems, the following almost certainly would:
STO r4,r5+7893
STO r2,r6+0

In this case, a NOP must be inserted if no other instruction can be moved in between the two STORES:
STO r4,r5+7893
NOP
STO r2,r6+0

Section 15.7
Delayed JUMPs

Instruction pipelines in RISC computers have to be as simple and fast as possible in order to not slow down the overall machine. Besides, they are usually too shallow, meaning there are only 2 or 3 stages, not 5 or 6.
Because flushing the pipeline takes time and wastes precious work already done by the cache, memory and decoder, RISC pipelines do not flush or predict. Instead, they blindly get the next instruction that physically follows the current instruction while the current one is executing.
RISC computers follow a simple rule: the instruction that physically follows a jump of any kind is always done, no matter what. While this may seem silly, remember that the compiler can always put a NOP instruction after a jump, and naive code generators often do that. But RISC designers expect the compiler to do some checking and find an instruction that can be moved into that position so as not to waste that time cycle. The space for an instruction following a jump is called the jump delay slot.
Consider the loop in Fig. 15.7.1, written on the left side in C using gotos and on the right side using assembler. (ASHL stands for "Arithmetic Shift Left" and was substituted for the multiplication by 2.)
top: TOP: ...
 k = k * 2; ASHL r6,r6,#1
 x--; SUB r5,r5,#1
 if (x > 0) goto top; JP r5,TOP
 NOP
Fig. 15.7.1: Naive code produced by a compiler for a RISC machine
Since the instruction after a jump instruction is always done in a RISC machine, a NOP is inserted.

However, it would be possible to move the k=k*2; statement down into that instruction slot following the JN because k=k*2; is always done in the loop, regardless of whether the JN succeeds or not.
top: TOP: ...
 k = k * 2; SUB r5,r5,#1
 x--; JP r5,TOP
 if (x > 0) goto top; ASHL r6,r6,#1
[bookmark: #Fig15_7_1]Fig. 15.7.2: Rearrangement of instructions so that ASHL (after JN) is always done
[bookmark: #Fig15_7_2]Though this seems weird, it does indeed work and gives the right answer, plus it keeps the instruction pipeline filled with real instructions, not NOP time markers.
Some jump-like instructions, such as CAL, RET, TRP and other subprogram and operating system calls, make it difficult to avoid using NOPs in the jump delay slot some of the time.

Section 15.8
Data Dependencies and the Code Reorganizer

The program that scans through the assembler code that is created by the compiler is called the code reorganizer or code shuffler, although it doesn't intermix the instructions in a random way like shuffling a deck of cards. Computer scientists are always trying to come up with colorful jargon to explain what they are doing.
While the main intent of the reorganizer is to make a faster, smaller machine program, one of its obvious requirements is that the reorganizer not alter the intent of the program as expressed by the programmer in the original source program, which is mirrored in the naive assembler code produced by the first phase of the compiler.
The code reorganizer's main job is to move instructions around in order to fill memory delay slots and the jump slots while not changing the result that the program computes. These requirements force the reorganizer to analyze how data flows between instructions. When one statement depends upon a prior one because they share a piece of data, we say that there is a dependency between the two statements.
In some cases, 2 or more statements are disjoint, meaning they could be executed in any order. For example, consider the following sequence:
x = a + b;
y = a * 2;
c = z + b;
Though variables a and b are referenced in the second and third instructions, their values do not change, thus permitting these three statements to be shuffled into any order without affecting the correctness of the program.

[bookmark: _GoBack]There are several different kinds of dependencies that crop up in programs:
1. true data dependency (also called write-read dependency or flow dependency)
R1 = R0 + R2
R3 = R1 * R6
2. antidependency (read-write dependency)
R1 = R0 + R2
R2 = R7 * R6
3. output dependency (write-write dependency)
R3 = R2 * R5
R4 = R6 + 1
R3 = R5 + 1
R7 = R3 / R8
Fig. 15.8.1: Several of the major types of dependencies
The first kind of dependency, the true data dependency, or more aptly called write-read dependency, shows the value in R1 being created in the first statement and then used in the next statement. Obviously, these two statements could not be interchanged because the value in R1 would not be correct. Data flows from the first statement into the second.
We saw true data dependency in Fig. 15.7.2 where the x--; statement could not be moved around because the value in r5, which is x, is created in the SUB instruction and used in the following JN instruction. The SUB instruction cannot be put into the branch delay slot after the JN because the value in r5 isn't ready until the SUB is done. Note that JN reads the value out of the specified register, so the occurrence of r5 in JN is equivalent to using r5 as an operand in arithmetic.
x--; SUB r5,r5,#1
if (x > 0) goto top; JP r5,TOP
The second kind of dependency is called antidependency because it seems to be backwards of the true data dependency. The value in a register (or variable) must be used before it is lost by reassignment:
R1 = R0 + R2
R2 = R7 * R6
If these two statements are moved around, R2 will be changed before it should be, giving incorrect results.
The third kind of dependency requires a larger context to appreciate:
R3 = R2 * R5
R4 = R6 + 1
R3 = R5 + 1
R7 = R3 / R8
R3 is changed in two statements which cannot be switched around. If they were the first value, R2 * R5, would be found in R3 right before it is used in the division statement, causing an incorrect answer.
The code reorganizer should freeze the order of the last two instructions due to the true data dependency on R3, but if it decided it would be okay to move the first two statements around, it might get into trouble if it put the first statement anywhere else. Thus, the reorganizer would fix the order of the two R3= instructions. The statement R4=R6+1 could be moved anywhere, however, because its register set is disjoint from all the others. Also, if R6 were R2, R5, or R8, the second statement could still be moved around, because none of these registers are reassigned within this segment of code.
Though all our examples use assignment statements, clearly any instruction which references values in a variable, such as a conditional jump, must participate in these calculations. Let's look at another simple example, showing first a C fragment and then some assembler code. We will assume a is in R1, b in R2, c in R3 and x in R7. R4 is used to store the result of subtraction so we can set the condition codes and thereby compare two values.
a = b + c; ADD r1,r2,r3
if (b <= c) SUB r4,r2,r3
 JP r4,AROUND
 NOP
 x = x + 2; ADD r7,r7,#2
 AROUND:
[bookmark: #Fig15_8_1]Fig. 15.4.10: Code showing how JUMPs participate in dependency analysis
The SUB instruction assigns a new value to r4. This is used in the following JP, just as if it were used as an operand in and ADD instruction. Thus, the SUB/JP pair form a true data dependency and cannot be interchanged. However, the first ADD instruction is disjoint in terms of registers which are assigned so it could be moved after the JP in order to fill in the jump delay slot.
The new code is:
a = b + c;
if (b <= c) SUB r4,r2,r3
 JP r4,AROUND
 ADD r1,r2,r3 <-- a=b+c; is actually here
 x = x + 2; ADD r7,r7,#2
 AROUND:
[bookmark: #Fig15_4_10]Fig. 15.4.11: Rearrangement of code in Fig. 15.4.10
[bookmark: #Fig15_4_11]The C code no longer corresponds exactly to the assembler after reordering of the statements to fill the jump delay slot. But the new code is faster and still produces the right answer.
A fourth kind of dependency shows up in Fig. 15.4.11. Though ADD r7,r7,#2 doesn't change or even mention any of the registers of the other statements, it must not be done before JP or the intent of the conditional jump will be subverted. Some authors call this a branch dependency or goto dependency. Code reorganizers must take this into account as well.
No one quite knows why RISC computers outperform their complex cousins, although it is certainly a combination of factors. Interestingly, though the compiler technology mentioned in this section was fully developed before RISC, it was only with the advent of RISC that it became vitally important to use in order to reap all the gains of the new hardware technology. Thus software and hardware form a symbiosis and cannot be separated.
Without a doubt, the next decade will continue to be ruled by RISC since it is so much faster. In fact, RISC may be the final stage of the evolution of the von Neumann computer, and further jumps may require leaping from the von Neumann platform altogether.

20

image4.gif

image5.gif

image6.gif

image7.gif

image1.gif

image2.gif

image3.gif

