Section 17.1
Overview of Secondary Storage Devices

Closely related to input and output technology is secondary storage, whereby a computer augments its memory capacity or stores the values of its memory in a non-volatile media. Non-volatile means that when the power goes off, the data in the memory are not erased, as is unfortunately the case with RAM memories. To avoid data loss during power failures, many computers have a battery backup which supplies electricity to the RAM if the regular power is cut.
In the infancy of computers, there was little difference between secondary storage and input or output. Humans could input data to a computer via punched cards, and the computer could punch out what was in its memory onto blank cards, thereby saving the data permanently, and also communicating with humans. But printers are not very good storage devices because the computer can't read the data back in once it is printed out on paper, although there are optical scanners that can sense the contrast of shadows and recreate the data from the printed page. Nowadays secondary storage is not used to tell humans what is in the computer's memory because the bits are microscopic in size.
Secondary storage trades off capacity for access time, or more succinctly time versus space (again). There is no faster way to store data than in transistors, i.e. flip-flops, but flip-flops are expensive and volatile. It also has a lower data density (fewer bits per unit volume) and runs hotter than the equivalent secondary storage. So the best strategy is to keep the data that are currently being worked on in RAM and put all other into secondary storage.
Secondary storage devices work by moving a physical medium past a read/write head, which is a device to pick up the data and convert it to electrical signals (a read operation), or to convert data from electrical signals to a physical encoding of some type and put it on the medium (a write operation.) Many devices use magnetism (tapes, hard disks, diskettes) while some use optics (CD-ROM). Each of these has its particular uses and drawbacks.
Probably the oldest surviving secondary storage method is magnetic tape, which we will not discuss in detail in this chapter since its method of operation is very similar to a disk drive. Today's tapes are much smaller and thinner than the giant wheels of old which defined in the public's imagination what a computer looked like. Blinking lights, which were never very useful, are also gone, making today's computers extremely boring! Only the flashy graphics on the monitor hint at the depths of complexity inside.
Tapes are still useful because a huge amount of data can be stored on a tape cartridge, making them ideal for backups. But they are very slow to use since accessing a random word of data from the tape might require rewinding the entire tape, a very time-consuming process. It is almost ludicrous that some of the earliest operating systems, called TOS (Tape Operating System), relied upon tapes for out-of-RAM storage.

Section 17.2
Disk Drives

The hard disk is the workhorse of a modern computer. It is where virtually all data is permanently stored, and it is also where much temporary data is kept when not in RAM. Each year the capacity goes up and the cost comes down, making disk drives still the best place to store code and documents.
Floppy disks, also called diskettes, work along the same principles as hard disks, so we will only discuss hard disks in this chapter. The terminology refers to the flexibility of the magnetic medium used. Floppy disks are just pieces of Mylar plastic coated with an iron-based "paint" that can be magnetized, while hard disks use the surface of a non-flexible platter as the base for their "paint." Floppies started out huge, 8 inches in diameter, and were originally designed only for IBM field diagnostics. Minicomputers of the early 1980s still used 8" floppies. Then 5.25" diameter floppies were made and used in most microcomputers until the late 1980s when they were supplanted by the now current 3.5" diameter floppies. The current 3.5" diskettes really don't seem floppy any more because the round Mylar surface is hidden in a hard plastic case that only the computer can open, whereas the older diskettes were kept in a sleeve and manually taken out of the sleeve by a human before being inserted into a disk drive.
Let's discuss how data is laid out on hard disks. Fig. 17.2.1 shows the basic setup from several angles.
[image: https://brahe.canisius.edu/~meyer/253/BOOK/ch17/GIFs/Fig17_2_1.gif]
Fig. 17.2.1: Hard disks, several different views
There are one or more platters in a hard disk, each platter being a non-flexible disk that is coated with the iron-containing "paint" mentioned above. Oftentimes the platters are coated on both sides in order to double the storage capacity.
Read-write heads are suspended above the platters' surfaces, riding on a micro-thin cushion of air that is generated when the platter spins at enormous rates, usually 3000 to 7000 rpm (revolutions per minute). These read-write heads contain wires that are coiled into a tiny electromagnet at the tip.
[bookmark: #Fig17_2_1][image: https://brahe.canisius.edu/~meyer/253/BOOK/ch17/GIFs/Fig17_2_2.gif]
Fig. 17.2.2: The electromagnetic in the read-write head
When a current is passed through the coil, a small magnetic field is momentarily created which realigns the iron molecules in the coating into one direction in a small region, thereby "writing" a 1 or a 0 onto the platter in that place.
[bookmark: #Fig17_2_2][image: https://brahe.canisius.edu/~meyer/253/BOOK/ch17/GIFs/Fig17_2_3.gif]
Fig. 17.2.3: Writing 1's and 0's onto the platter's surface
The coil in the read-write head can also be used to sense the presence of a magnetic field oriented in a certain direction. When a wire is moved through a magnetic field, as Faraday discovered 160 years ago, a current is generated in the wire. Thus, moving the coil of the read-write head over a magnetized region will cause a current to flow in the coil wire, which can be sensed by the electronics, making it possible for the computer to "read" the 1 or 0 that is stored on the platter in that small region.
In order to squeeze millions of bits onto the platter's surface, the read-write head slides back and forth across the platter's surface, very much like the tone arm of an old record player or the laser beam of a modern music CD player. Data bits are stored in concentric tracks that are logically formed on the surface of the platter when the read/write head is stationary. To jump to the next track, a small electric motor called the stepper motor is turned on briefly. The clicking sound that you hear from your hard disk when it is reading or writing files is the stepper motor turning on and off.
[bookmark: #Fig17_2_3][image: https://brahe.canisius.edu/~meyer/253/BOOK/ch17/GIFs/Fig17_2_4.gif]
Fig. 17.2.4: Stepper motor and tracks on the platter surface
In most disk drives, there is one read-write head per surface, and all heads are attached to the same assembly and the same stepper motor. Thus, if one head moves to track 37, all the others will too. This isn't an inconvenience, since a disk drive can usually respond to only one read/write command at any given time. Refer back to Fig. 17.2.1 to see the multiple head assembly that is common today.
Bits are stored in the tracks as though each track were one long ribbon of magnetic tape. However, because each track usually holds a vast number of bits, the system breaks each track into a number of logical sectors, which are pie shaped wedges of the tracks. There is a small gap between each sector that is not used for data.
[bookmark: #Fig17_2_4][image: https://brahe.canisius.edu/~meyer/253/BOOK/ch17/GIFs/Fig17_2_5.gif]
Fig. 17.2.5: Sectors
[bookmark: #Fig17_2_5]When a disk drive stores data, it always reads or writes one complete sector. It is too difficult to align the read/write head at an arbitrary bit position when it is spinning so fast. If the read-write head were between bit positions when the electronics started to read the bits, the wrong values would be sensed. So the disk drive waits until it senses the dead space between sectors before it starts to read or write. It then continues, reading or writing all the bits in that sector. Many disk drives today store 512 bytes (or 0.5K) per sector.

Section 17.3
Data encoding techniques for disk drives

Have you ever wondered why computers have to format disks or diskettes, and why it takes so long? The reason is because the disk drive must write the initial sectors and tracks on the platter(s) so that when it comes time to write real data, it will know where to put it. Older disks were hard-sectored, which meant that there were holes in the floppies or some kind of reflective line in a hard disk so that the disk drive knew where the sectors started. Nowadays, soft-sectoring is used instead, where the disk drive doesn't rely on any physical indication of the start of sectors, but instead writes a special bit-pattern on the surface to indicate the beginning of sectors. Similarly, the dead space is really just a special bit pattern.
The ability to soft-sector a disk and to use a special bit pattern to indicate "there's no data here" implies that disk drives do not write bare 1's and 0's on the platter. That is, if a disk drive were to write the ASCII character 'A', which is 65, or 01000001, it would not actually write 01000001 onto the surface. In fact, it wouldn't write "bits" at all, but rather align the magnetic fields of the iron-paint, so that it might look like NSNNNNNS, where N means "North" and S means "South."
In order to use non-data bit patterns, disk drives use other kinds of encoding of the bit data, These encodings seem to waste space, but they are preferable to hard sectoring or other methods. One such bit encoding might use 00001111 to signal dead space and 00010001 to signal that the next group of bits begins the sector. Then the actual bits are encoded using 10 for 0, and 01 for 1. Thus, 'A' would be encoded as 1001101010101001. This halves the raw bit capacity of the disk drive, but for many reasons this sacrifice is worthwhile.
One problem in electronics is drift, where the circuits lose the bit boundaries in a long stream of pure 1's or pure 0's. The disk drive is spinning quite rapidly, but there are often minor variations in speed which make it impossible for the electronics to stay perfectly in sync for more than about 8 bits. Thus, a string of ASCII NULLs (00000000) or all 1's would confuse the disk drive and its attached controller.

Fig. 17.3.1 illustrates how two computers which are communicating over a modem, or two devices communicating over a bus, can misinterpret the bit stream if their clocks are not perfectly in synchronization. Since the receiver's idea of a bit slice is "wider" than the sender's, the receiver will sample parts of the incoming signal at later and later times, eventually skipping an entire bit.
[image: https://brahe.canisius.edu/~meyer/253/BOOK/ch17/GIFs/Fig17_3_1.gif]
Fig. 17.3.1: Clock drift causes the receiver to skip an entire bit
Bit encodings that cause frequent transitions between 1 and 0 solve this problem, because the disk drive knows when there is a transition from 0 to 1 or 1 to 0 that a bit boundary is found there. ASCII NULL would be 1010101010101010, which gives regular and frequent transitions. In fact, the bit encoding we have been using, which is called Manchester encoding, never puts more than two 1s or two 0s in a row.
Fig. 17.3.2 illustrates a bit stream encoded using Manchester encoding. The receiver still has a clock and it senses the signal level regularly. But Manchester encoding never allows three half-bit time intervals to have the same signal level, so if the receiver sense this condition, it knows its clock is drifting. Therefore, it takes corrective action and resets its time interval.
[bookmark: #Fig17_3_1][image: https://brahe.canisius.edu/~meyer/253/BOOK/ch17/GIFs/Fig17_3_2.gif]
Fig. 17.3.2: Manchester encoding builds in its own synchronization;
A sequence of 1s introduces a change ever bit slice. 1 followed by 0
would have two time half-bits at the same level, but there would never
be three half-bits at the same level
[bookmark: #Fig17_3_2]

Section 17.4
Disk addressing

Since disks are actually memory devices, it must be possible for a computer to store data in one place and retrieve it later. To enable addressing, sectors are assigned numbers and a computer specifies a sector address with every read or write command. Since there are many tracks and many platters, a sector address is the concatenation of the surface number, track and sector. (Each platter has two surfaces.)
For example, the following C-like calls might be similar to ones that the operating system would give to a disk drive. Recall that a sector is often 512 bytes or more and each operation reads or writes one full sector.
int write (char data[512], int surface, int track, int sector) { ... }
int read (char data[512], int surface, int track, int sector) { ... }
The return value is an error code.
Modern computers almost never manage the direct reading or writing of the platter surfaces but instead relegate this to a controller, a tiny computer whose sole responsibility is to respond to commands from the main computer and then carry out the desired operation by issuing microcommands to the actual hardware. One of the reasons for doing it this way is that the same disk drive can be used in different computers without redesign. The main task would be to write a device driver for the main operating system, a piece of software that translates high-level I/O commands that the operating system issues into commands that the disk drive controller understands. Then the controller issues the microcommands to the stepper motor and the read/write head and spaces out these actions in time so that the data gets properly read or written to the surface.

Fig. 17.4.1 shows this association:
[image: https://brahe.canisius.edu/~meyer/253/BOOK/ch17/GIFs/Fig17_4_1.gif]
Fig. 17.4.1: Main CPU communicating to disk drive controller via device driver software
[bookmark: #Fig17_4_1]Because of the presence of the disk drive controller, some disks number the sectors consecutively from 0 up to the maximum on the whole drive, allowing the operating system to specify a sector number without knowing which track or surface it is on. The controller then does the translation to an actual surface, track and sector.

Section 17.5
Data transfer rates

Modern disk drives are fabulously fast. Seagate announced a new disk drive in the fall of 1997 that spins at 10,000 rpm and can transfer 11 megabytes in one second. However, disks are still much slower than RAM and here's why. First, the actual data transfer rate, the speed at which bits are written onto the platter surface or read from it by the read/write head, depends upon the angular speed of the platter, i.e. its rate of rotation. Since it takes more and more energy to whirl the platters faster, there are practical limits. Moreover, the bearings which anchor the platters to the disk drive frame wear out if it spins too fast.
Even so, the data transfer rate, the time it takes to read or write one full sector, is small compared to the time it takes to get to the right sector, which breaks into two parts:
1. seek delay -- the time it takes the stepper motor to move the read-write head to the right track
2. rotational delay -- the time it takes for the platter to spin around so that the start of the sector comes under the head
The larger the platter is, the longer the rotational delay because the tracks are longer. Another anomaly is that the bit density is greater towards the center than at the rim because of the differences in lateral (sideways) velocity when the angular velocity (rate of rotation) is held constant. Modern disk drives compensate for this in various complicated ways.
Seek delay is often the longest component of the total time it takes to read or write a disk, because the stepper motor must be turned on, kept on until the read-write head moves to the correct track, and then turned off. Electric motors, like any physical device, cannot accelerate to their full operating speed instantly, so allowances must be made for the acceleration and deceleration of the motor. Seeking to a distant track is usually not as long as it would take to go to that track by doing one track seek at a time since the stepper motor, once on, can be left turned on until the read-write head nears the desired track.

Section 17.6
Files

Operating systems devote a lot of code to the most efficient organization of files in a disk drive. A file is an abstract entity, a fiction maintained by the operating system, whereas a sector is somewhat more concrete, since it can be identified as being a particular place on the surface. Many files are longer than one sector so several sectors must be used to store a file. Disk drives and their controllers know nothing of files nor do they care what data the operating system stores inside the sectors, freeing the OS to structure files in any way it wants.
Some early microcomputer systems stored files as consecutive sectors on the same track, spilling over to the adjacent track if the file were too long. This method, called contiguous allocation, makes it difficult to move files around, or to enlarge an existing file, since it would clash with the next file on disk. MS-DOS works this way.
Fig. 17.6.1 shows this rigid system.
[image: https://brahe.canisius.edu/~meyer/253/BOOK/ch17/GIFs/Fig17_6_1.gif]
Fig. 17.6.1: Storing files in consecutive sectors under contiguous allocation
The advantages of this system are that it is simple and easy to implement and it is very fast. Most large computers and many modern personal computers use a much more complicated and flexible method. Taking the cue from virtual memory pages, these systems break a file into sector-sized pieces and store them anywhere on the disk where there is free space. In order to know which sectors are part of which files, the operating system maintains either tables relating sector addresses to positions in the file, or it chains together the sectors in linked lists. The directory entry that stores the file's name also stores the address of the first sector of the file. To find the second sector, the operating system reads the first sector and decodes part of the 512 bytes as the pointer to the next sector.
Fig. 17.6.2 shows how this might look.
[bookmark: #Fig17_6_1][image: https://brahe.canisius.edu/~meyer/253/BOOK/ch17/GIFs/Fig17_6_2.gif]
Fig. 17.6.2: Several files stored as linked lists of sectors;
Only the beginning of the linked list for file 1 is shown
Linked-list allocation gives the ultimate in flexibility and disk utilization, but after a while, performance slows down. When files are deleted, sectors are reclaimed and stored on a free sector list, which serves as a pool from which the operating system can get a chunk of disk memory when it needs it. Over time, these sectors will be sprinkled over the entire disk, and files that are formed from them will likewise pepper the disk, causing the reading of a file to involve many seeks and slowing it down. Minimizing this effect is one of the tasks of operating systems designers.
One solution is to reorganize or defragment the disk every so often--write all files to tape or another disk, and then write them back to the original disk, only using consecutive sectors and adjacent tracks. This takes time and must be done when the disk is not actually needed by programs.
Another method of reducing seek time is to keep all sectors of a given file close to each other. A cylinder is a group of all tracks on the several surfaces of a disk drive that are at the same distance from the edge. (see Fig. 17.6.3)
[bookmark: #Fig17_6_2][image: https://brahe.canisius.edu/~meyer/253/BOOK/ch17/GIFs/Fig17_6_3.gif]
Fig. 17.6.3: A cylinder is an imaginary grouping of all the tracks at the
same distance from the center of the disk drive on all the surfaces
[bookmark: #Fig17_6_3]Suppose a large file were being written. When the current track fills up, the computer switches to another read-write head, an electronic operation which is almost instantaneous, and continues writing on the next track in the same cylinder. Of course, it may run out of room even then, in which case it can switch to the next cylinder and continue there. UNIX BSD4.3 clumps cylinders into cylinder groups to further isolate parts of the disk and minimize seek time. Each cylinder group has its own private free sector list.
Very large files such as huge databases may not fit entirely on one disk drive, in which case they may be continued on another drive. Specialized database management software helps the operating system with their maintenance.

[bookmark: _GoBack]Section 17.7
CD-ROMs

As programs and data files got much larger, more capacious media were needed to hold them. For a while, major software vendors were selling boxed software that had 20 floppy diskettes for installation, with the programs and data on those diskettes in compressed format! Soon, computer designers realized that CD-ROMs which were used for music could also hold data.
CD-ROM stands for Compact Disk, Read Only Memory. It is an inflexible plastic platter, with only one active surface, that stores data very much like a disk drive. A typical CD-ROM stores about 650 MB, which is over 400 hundred times as much as a single floppy diskette.
Data is not stored in magentic form on a CD-ROM but in an optical fashion. Bits are written into the platter by burning tiny holes or pits into the surface so that later a laser, bouncing light off the plastic's surface, can sense when there is a hole or not by measuring the reflectivity of the surface. The presence or absence of a hole corresponds to a bit. A hole means "1" and no hole means "0."
There are several other differences between CD-ROMs and disk drives. The most obvious is that CD-ROMs, once written, cannot be rewritten because there is no way to fill in the microscopic holes again. Another difference is that the holes are arranged in a spiral, rather than concentric circles. Old vinyl phonograph records, using diamond needle tone arms as the read head, also used a spiral so that the needle would not have to be lifted out of the current track and put into the next one. However, CD-ROM readers start from the center and move outwards, whereas phonographs start at the edge and spiral inwards.
Another difference between CD-ROMs and disk drives is the extra error checking that is included on CD-ROMs due to the fact that their surfaces are directly exposed to humans and other dangerous things in the environment, whereas disk drives are sealed. Even disk drives include some error detecting bits, such as simple parity, to discover if a byte has suffered damage. But CD-ROMs, which can't be fixed by rewriting, include error correction bits which allow the computer to reproduce the correct bit pattern, as long as not too many bits have been damaged. It is possible, for example, to take a knife and scratch the CD-ROM without impairing its data, as long as the scratch isn't too wide and as long as it goes radially, i.e. from the center to the edge. A scratch that is angular may make the data unrecoverable.
Finally, CD-ROM drives that can write are becoming cheap enough for the average person. These drives can be used to back up an entire hard disk on a CD-ROM instead of tape. One can also use a CD-ROM disk as a kind of volatile storage, just like one would use a hard disk, writing, rewriting and deleting files. The way this works is that the old version of the file is burned out of existence by burning pits into every position, thereby obliterating it. The new version is then written to the free area of the CD-ROM. When the CD-ROM fills up, no more files can be rewritten and the state of the CD-ROM is frozen. However, CD-ROMs are still quite slow compared to hard disks so they are not likely to supplant traditional magnetic disks soon.
There are other, newer kinds of disk technologies that are hitting the stores today: ZIP disks, JAZZ disks, and IBM's microdisk. Some of these such as the ZIP and JAZZ disks, are updates to the floppy disk technology to handle the much larger files today. ZIP disks (made by Iomega, Inc.) hold up to 100MB of data while JAZZ store 1GB or 2GB. The prices of these disks are correspondingly much higher than the venerable 3.25 inch floppy: Roughly $15 each for a ZIP disk and $90 each for a JAZZ disk.
This has been only a very cursory overview of a huge subfield input/output and secondary storage. There are many similarities in the devices, and the preference given to one or the other is entirely due to either economics or speed. There are also lots of issues that arise which define the shape and scope of operating system software. Usually, the average programmer doesn't want to have to think about the nitty gritty details of which sectors or which tracks a file actually occupies, so system software must hide all this and provide a convenient abstraction, the file.

15

image4.gif

image5.gif

image6.gif

image7.gif

image8.gif

image9.gif

image10.gif

image11.gif

image1.gif

image2.gif

image3.gif

