Section 2.1
Introduction to Boolean Algebra

While diagrams of logic circuits are a convenient abstraction, they are still too clumsy for some purposes. One of these is to find a circuit that computes the same function (has exactly the same truth table) as another circuit that has more gates. Gates are made up of transistors and transistors cost money. Hence a circuit that has more transistors than actually needed is too expensive and should not be used. Larger circuits are often slower than smaller circuits (though not always) due to the fact that the signals have to propagate through longer chains of gates.
Boolean algebra is another abstraction that allows easy manipulation of logic functions. It uses expressions similar to real number algebra and follows a set of rules that are also very similar to algebra. We will study these rules and how to manipulate expressions, as well as compare expressions to actual logic circuits.
Logic variables can have one of two values: 1 or 0. Each wire in a logic circuit corresponds to a logic variable and we will use the same names, usually single letters. Each gate in a logic circuit corresponds to an operator of Boolean algebra; these usually do not have their own names.
Here are some examples of Boolean algebra expressions:
A
1
A+B
(A+B)*(C+-D)
(A+B)(C+D')
A'B'C
-A*-B*-C
Because the symbols are not standardized, some of the above expressions mean the same thing. We will learn in succeeding sections what the various forms are, as well as settle on a standard we will use in this textbook.

Section 2.2
Gate symbols and their algebraic equivalents

Gates correspond to operators in Boolean algebra. + is used for OR while * or a larger dot is used for AND. Here are some examples of gates and their equivalent expressions:
[image: https://brahe.canisius.edu/~meyer/253/BOOK/ch2/GIFs/Fig2_2_1.gif]
Fig. 2.2.1: Equivalence of gates and Boolean algebra expressions
Often the dot is omitted from AND expressions, so it is more likely to see AB = C instead.
It is not coincidental that the symbols for multiplication is used for AND and the symbol for addition used for OR. In fact, the truth table of AND is identical to multiplication of two logic variables: anything times zero is zero, and one times one is one. The truth table for OR is the same as addition except for the last row, since 1+1[image: https://brahe.canisius.edu/~meyer/253/BOOK/notequals.gif]1 in the world of numbers. Nevertheless the similarity is close so the analogy with addition is maintained. AND is often called Boolean multiplication and OR Boolean addition.
Logic circuits are translated into algebraic expressions gate by gate. Internal wires are sometimes labeled with the algebraic expression of the gates that create their value, as shown in Fig. 2.2.2.
[bookmark: #Fig2_2_1][image: https://brahe.canisius.edu/~meyer/253/BOOK/ch2/GIFs/Fig2_2_2.gif]
Fig. 2.2.2: Logic circuit; internal wires are labeled
Since AB = x1 in Fig. 2.2.2 and CD = x2, we could replace the names x1 and x2 in the expression x1+x2 = E. Thus, the expression for Fig. 2.2.2 becomes AB + CD = E. In fact, the output wire E is usually labeled merely as AB + CD.
Here are the Boolean algebra operators for the other gates:
[bookmark: #Fig2_2_2][image: https://brahe.canisius.edu/~meyer/253/BOOK/ch2/GIFs/Fig2_2_3.gif]
Fig. 2.2.3: Boolean algebra operators for other gates
Negation has several notations. The horizontal bar above a logic variable is very common as is the use of the prime mark (single apostrophe), negative symbol or a minus sign with a little hook on the right end. Since it is easier to type the prime mark or the negative symbol, we will use that more often.
The NAND, NOR and XNOR gates use the same notation as their positive counterparts, except for the negation bar on top.
Another common notation uses a V symbol for AND and OR. The V is inverted for AND and right side up for OR. Another but far less common notation uses a U instead of a V. We will not use these notations but they are found in other books.
In this web book, we sometimes use @ to represent exclusive OR, since the traditional symbol ⊕ isn't available on most keyboards.

All these variants are show in Fig. 2.2.4. The first example in the second column is the preferred version for this book. Notice that AND and NOT have many variants, some of which are difficult to type on a computer keyboard! The overbar is quite difficult.
[bookmark: #Fig2_2_3][image: https://brahe.canisius.edu/~meyer/253/BOOK/ch2/GIFs/Fig2_2_4.gif]
Fig. 2.2.4: Alternate notations for AND, OR, NOT, NAND, NOR, XOR and XNOR
[bookmark: #Fig2_2_4]

Section 2.3
Translating expressions into circuits

Given a Boolean expression such as AB' + C(A+B), we might want to draw the equivalent logic circuit. While this is a fairly straightforward process of substituting gates for operators, there are a few subtleties.
First, there should be only one line or wire for each Boolean variable. Thus, there would only be 3 lines for AB' + C(A+B), and they are: A, B, and C. Since A is used in several subexpressions, a solder point might be needed to connect otherwise separate wires. The same goes for B.
Second, Boolean operators have a precedence order defined for them to avoid having to parenthesize every expression fully, thus cluttering up things. This precedence order is:
[image: https://brahe.canisius.edu/~meyer/253/BOOK/ch2/GIFs/Fig2_3_1.gif]
Fig. 2.3.1: Precedence order for Boolean logic operators
NAND and NOR are treated as separate NOT AND and NOT OR. Once the precedence is known, it is easy to tell which operators are "performed" first, which implies that the wires leading into the gates for those operators do not first pass through other gates.
We will use a two-step process of first fully parenthesizing a Boolean expression using the precedence order. Then we will translate that new expression into gates based on selecting the innermost parentheses.
Let's dissect the expression AB' + C(A+B) in order to parenthesize it fully. There is a parenthesized subexpression, (A+B), which should be examined first. Since it contains a simple Boolean expression (just one operator), we leave it alone. Next we look for NOTs and find B'. This we surround with parentheses. Now our expression looks like:
A(B') + C(A+B)
Next we look for AND and we see two instances: A AND (B'), and also C AND (A+B). The ordering doesn't matter so we use a simple rule of going from left to right. This means we parenthesize A(B') to get
(A(B')) + C(A+B)
Next we parenthesize C AND (A+B):
(A(B')) + (C(A+B))
Finally the only thing left is the OR at the "top level." We don't really need to parenthesize it, but we will in order to be totally consistent:
((A(B')) + (C(A+B)))
Now we need to create a logic circuit that reflects this expression. We note there are only three unique Boolean variables so there will be 3 lines or wires. There are five Boolean operators so there will be five gates. Remember that XY stands for X AND Y. Some people feel more comfortable inserting a dot or an asterisk for each AND:
((A*(B')) + (C*(A+B)))
The way to create the logic circuit is to replace the innermost parenthesized expression with a gate, creating a new line that is the output of this gate, and then replacing that in the expression. Since there are two "innermost" expressions, (B') and (A+B), we will choose the left one first. This gives us our diagram:
[bookmark: #Fig2_3_1][image: https://brahe.canisius.edu/~meyer/253/BOOK/ch2/GIFs/Fig2_3_2.gif]
Fig. 2.3.2: Wires for A, B, and C, and also B'
Notice that we drew three lines, one for A, one for B and one for C, since we will eventually need them all. The output line of the NOT gate is called t1 (temporary line number 1), and it replaces (B') in the expression:
((A*t1) + (C*(A+B)))

Now we do the same algorithm all over again, until we have only a temporary line name left. We next find the innermost expression, and again we could choose (A*t1) or (A+B). Sticking to our rule we prefer the leftmost one. (A*t1) causes an AND gate to be constructed, one of whose inputs is the output of the NOT B gate:
[bookmark: #Fig2_3_2][image: https://brahe.canisius.edu/~meyer/253/BOOK/ch2/GIFs/Fig2_3_3.gif]
Fig. 2.3.3: More of the expression turned into a logic circuit
This gives us a new line, t2, which replaces the old subexpression (A*t1):
(t2 + (C*(A+B)))
Now the innermost expression is (A+B) so we construct an OR gate for that and name its output line t3. Note that we will need to use two solder points to connect the A and B lines that already feed into gates to also feed into this new OR gate:
[bookmark: #Fig2_3_3][image: https://brahe.canisius.edu/~meyer/253/BOOK/ch2/GIFs/Fig2_3_4.gif]
Fig. 2.3.4: More of the expression turned into a logic circuit
This gives us the following Boolean expression:
(t2 + (C*t3))

The innermost expression is now C*t3 so we replace that with t4 and another AND gate:
[bookmark: #Fig2_3_4][image: https://brahe.canisius.edu/~meyer/253/BOOK/ch2/GIFs/Fig2_3_5.gif]
Fig. 2.3.5: More of the expression turned into a logic circuit
This yields,
(t2 + t4)
which is about as simple as Boolean expressions get.
However, there is one more operator in this expression, +, so we create an OR gate for that. Note that both inputs are temporary lines:
[bookmark: #Fig2_3_5][image: https://brahe.canisius.edu/~meyer/253/BOOK/ch2/GIFs/Fig2_3_6.gif]
Fig. 2.3.6: Final logic circuit corresponding to ((A*B')+(C*(A+B)))
[bookmark: #Fig2_3_6]Replacing (t2 + t4) with its output, t5, gives us the Boolean expression
t5
which is the simplest possible and signifies that we are done.
Any Boolean expression can be turned into a circuit like this. First, fully parenthesize the expression using the precedence order. Then repetitively replace innermost simple expressions with temporary lines, corresponding to gates.

NAND and NOR are represented in Boolean expressions using the NOT symbol combined with AND or OR. Notice that when the horizontal bar extends over a Boolean expression it should treat as if it were parenthesized:
[image: https://brahe.canisius.edu/~meyer/253/BOOK/ch2/INSERTs/GIFs/overbar.gif]

Section 2.4
Truth tables from Boolean expressions

After a Boolean expression has been fully parenthesized, a truth table can be built for it without first creating a logic circuit. This is useful in proving properties about expressions or proving that two expressions compute the same function.
First, make a column for each of the Boolean variables. Let us again use the expression
AB' + C(A + B)
which when fully parenthesized and the ANDs made explicit becomes:
((A*(B')) + (C*(A+B)))
There are three Boolean variables, A, B and C, so there will be three columns for these variables. More columns will be created for the temporary lines that are the result of combining these three original variables using Boolean operators.
We need to write out all combinations of values for A, B, and C, which is all possible scenarios of 1s and 0s for these variables. In order to ensure we don't miss any combinations, we will use canonical order. Since there are three variables, there will be 23 or 8 combinations, each one to its own row:
A B C

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1
Since we built the logic circuit for this expression, we have already analyzed the expression and discovered all the temporary lines, t1 through t4. Each of these gets its own column.

The values of these temporaries is not independent of other lines, however, since they are computed by Boolean operators on the original 3 wires. We see that wire t1 is computed by negating B. Thus, we consult the B column, and wherever there is a 0, we write a 1 in the t1 column, and wherever there is a 1 in the B column, we write a 0:
A B C | t1
---------------+----
0 0 0 | 1
0 0 1 | 1
0 1 0 | 0
0 1 1 | 0
1 0 0 | 1
1 0 1 | 1
1 1 0 | 0
1 1 1 | 0
Next we compute t2, which is A*t1:
A B C | t1 t2
---------------+------------
0 0 0 | 1 0
0 0 1 | 1 0
0 1 0 | 0 0
0 1 1 | 0 0
1 0 0 | 1 1
1 0 1 | 1 1
1 1 0 | 0 0
1 1 1 | 0 0
and continue this until all the temporaries are created:
A B C | t1 t2 t3 t4 t5
---------------+--
0 0 0 | 1 0 0 0 0
0 0 1 | 1 0 0 0 0 t1 = B'
0 1 0 | 0 0 1 0 0 t2 = A*t1
0 1 1 | 0 0 1 1 1 t3 = A+B
1 0 0 | 1 1 1 0 1 t4 = C*t3
1 0 1 | 1 1 1 1 1 t5 = t2+t4
1 1 0 | 0 0 1 0 0
1 1 1 | 0 0 1 1 1

Some books label the temporary columns with the subexpressions that generated them, which works until the subexpressions get very long. Here is the same truth table with the subexpressions labeling the columns instead of the temporaries' names:
A B C | B' AB' A+B C(A+B) AB'+C(A+B)
---------------+--
0 0 0 | 1 0 0 0 0
0 0 1 | 1 0 0 0 0
0 1 0 | 0 0 1 0 0
0 1 1 | 0 0 1 1 1
1 0 0 | 1 1 1 0 1
1 0 1 | 1 1 1 1 1
1 1 0 | 0 0 1 0 0
1 1 1 | 0 0 1 1 1
The last column is said to be the function that this Boolean expression computes. The function of a logic circuit is also the truth table that is generated by the Boolean expression that is equivalent to the circuit.

Section 2.5
Constructing the minterm expression from a truth table

Another direction that circuit designers often travel is from a truth table to a circuit, or to a Boolean expression, since expressions and circuits are easily translatable into each other. Going from a truth table to an expression is more an art than a science since there are many, in fact an infinite number of, expressions that compute any given truth table. However, we will use a scientific method that always works, even if it doesn't always produce the best (i.e. the smallest or simplest) expression.
This method is called finding the minterm expression, also called the canonical expression or the sum of products. The last appellation makes the most sense.
Suppose there is a truth table of 3 Boolean variables:
A B C | x
----------------+----
0 0 0 | 1
0 0 1 | 0
0 1 0 | 0
0 1 1 | 1
1 0 0 | 1
1 0 1 | 1
1 1 0 | 0
1 1 1 | 0
In order to find a Boolean expression that computes this function, we do sort of the reverse of what we did above when we found the truth table from a given Boolean expression. One way would be to just play around with combinations of A, B and C, using any of the Boolean operators, until we got something that worked. But this would drive us crazy fast! The minterm method is very straightforward.
First, look only at the rows where the function, which is the column labeled x above, has a 1 in it. Now for each of these rows, construct a Boolean expression consisting only of ANDs of the three variables or their negations. Let's look at the row where A=0, B=1 and C=1:
A B C | x
-----------------+------
 ... |
0 1 1 | 1
 ... |
The desired Boolean expression would be A'*B*C. Wherever there is a 0, use the negated form of the Boolean variable of that column, or A' in this case. If there is a 1, just use the Boolean variable, then AND all of them together. This is called a minterm.
Doing this for all the rows gives us four minterms for the sample truth table, since four of the rows of the truth table have a 1 in the result, or x, column. OR all of these minterms together to get the final Boolean expression:
A B C | x
----------------+-----------------------
0 0 0 | 1 A'*B'*C'
0 0 1 | 0
0 1 0 | 0
0 1 1 | 1 A'*B*C
1 0 0 | 1 A*B'*C'
1 0 1 | 1 A*B'*C
1 1 0 | 0
1 1 1 | 0
The final expression is A'*B'*C' + A'*B*C + A*B'*C' + A*B'*C. Many writers would omit the asterisks, giving A'B'C' + A'BC + AB'C' + AB'C, which is a bit more readable.
It turns out that A*B' + A'*(B'C' + BC) is another, somewhat simpler expression that also computes the same function, but it is not obvious how to find that just given the truth table above. Most circuit designers first write out the minterm expression and then use Boolean identities to transform the expression into an equivalent. (These identities are discussed in chapter 3.)
Remembering that AND is sometimes called Boolean multiplication, and OR Boolean addition, it becomes obvious why this minterm expression is called the sum of products form, since each individual minterm is a Boolean product, and the final result is the sum of all these products.

[bookmark: _GoBack]The reason why this method works is that each individual minterm is really a Boolean expression that computes a function that has only one 1 in it, precisely at the point where all of its variables are all 1. If we OR all these functions together, we get a new function that has 1s only at the desired spots in the original truth table:
A B C | x A'B'C' A'BC AB'C' AB'C
---------------+---
0 0 0 | 1 1 0 0 0
0 0 1 | 0 0 0 0 0
0 1 0 | 0 0 0 0 0
0 1 1 | 1 0 1 0 0
1 0 0 | 1 0 0 1 0
1 0 1 | 1 0 0 0 1
1 1 0 | 0 0 0 0 0
1 1 1 | 0 0 0 0 0
OR the last four columns together to get the x column.

15

image5.gif
NOT

AND

OR

NAND (4B

NOR (A+BY

R A@B

(a@B)

image6.gif
NOT
AND, NAND

R.XOR,

image7.gif

image8.gif

image9.gif

image10.gif

image11.gif

image12.gif

image1.gif

image2.gif

image3.gif

image4.gif

