Section 18.1
Early History of I/O

In previous chapters we studied actual I/O and secondary storage devices: tubes, tapes, disks, cards, mice, touchscreens, lightpens, ... the list seems endless. Now we will discuss how the CPU manages to collect actual values from these devices for internal storage and use.
The earliest computers had separate input and output instructions. In those days (very late 40s, early 50s) peripherals, input and output devices and secondary storage devices, were few in number and crude. Usually there was a printer and a punched card reader and a tape drive. The tape was often used for both programs and data. In fact, the essential system software managed tapes, directing when to load a particular tape on the tape drive. These were called TOS (Tape Operating Systems). Imagine how slow and clumsy they were!
Display devices (mostly printers) were minimal, too. One story tells how programmers of the Univac I tried to draw maps on a printer that printed out only numbers, not even letters or punctuation!
Consequently, those computers had a PRINT instruction and a READCARD instruction. Since computers weren't shared, no one thought of any other way of doing I/O. However, programmers noticed that the huge discrepancy between the speed of the CPU and the speed of the peripherals meant that a computer system would do a flurry of many "operate" instructions (ADD, MOV, SUB, etc.) and then it would hit an I/O instruction. The hardware would have to pause until the I/O instruction completed, usually many milliseconds later. This wasteland of time would later become a fertile prairie upon which multiprogramming would flourish.
As more peripherals were added, it soon became clumsy to have a separate instruction for each device, especially if not all computer systems were equipped with the same devices. Instructions became more abstract, mentioning only a port number instead of hard-coding whether it was a printer, a plotter or a card reader. I/O instructions became simpler, and only two, IN and OUT, were sufficient. The Intel x86 line of microprocessor chips keeps up this grand tradition, long after mainframes had moved onto grander schemes, and even today the fanciest of the Pentium chips still have an IN and an OUT instruction.
Port numbers used with IN and OUT instructions are addresses of hardware regions on a chip. They are places where internal data wires end in contact pads on the edge of the chip, to which the wires of external devices connect. An instruction such as IN 5 copies the signals on the wires connected to contact pad set number 5 into the accumulator. Some input device is physically connected to contact pad set number 5 and is setting those pads and the wires attached to them to logic values. Symmetrically, OUT 5 copies the contents of the accumulator register onto the wires that end in contact pad set 5. Any device attached to that pad set would get these logic values.
Fig. 18.1.1 shows in a very general way how I/O ports connect to peripherals. Usually ports connect to internal buses which feed the input and output wires of the accumulator.
[image: https://brahe.canisius.edu/~meyer/253/BOOK/ch18/GIFs/Fig18_1_1.gif]
Fig. 18.1.1: Connections between the CPU and the ports, and ultimately to the peripherals
Fig. 18.1.2 magnifies Fig. 18.1.1 to show how an individual flip-flop of the accumulator is connected to the ports. The IN command gates the value from the port to the accumulator, while the OUT command electrically connects the output of the accumulator to the port. Another complication not shown in these diagrams is that the various ports are connected by a multiplexor to a common internal bus that attaches to the accumulator. The port number which is the parameter of the IN or OUT instruction selects which port will connect to the accumulator via the multiplexor.
[bookmark: #Fig18_1_1][image: https://brahe.canisius.edu/~meyer/253/BOOK/ch18/GIFs/Fig18_1_2.gif]
Fig. 18.1.2: How the ports connect to the flip-flops of the accumulator
[bookmark: #Fig18_1_2]Input and output in real systems is horrendously complicated. First of all, devices need to communicate with the CPU in both directions because control signals flowing from the CPU to the device are matched by status signals flowing from the device to the CPU. Data is flowing one way or the other, or sometimes in both directions, as in the case of devices like disk drives.
And then there's timing. Real I/O devices take various amounts of time to work and the speed of the CPU must be matched to the speed of the devices or somebody will miss the signals by latching values on wires into registers at the wrong time. Early peripherals were built specifically to match the CPUs that would be using them, but modern peripherals must work with a variety of CPUs of diverse speeds. For example, one might buy a disk drive to be used with a 486 SX computer. Later, when upgrading to a Pentium 100 MHz, that old disk drive might still be used. But simply plugging it into the motherboard of the new computer is disastrous if the speed of the controller cannot match the speed of the bus. So peripheral manufacturers put lots of "smarts" into the circuitry so that the speed can either be set manually by small dip switches or in software, usually through some sort of initialization file that writes speed values into on-board registers during boot time. The modern trend, called plug 'n' play, is to have the peripheral and the CPU and the bus do all of this automatically by sending out messages announcing their presence and their bus address, along with their operating characteristics. This trend towards more general compatibility is called interoperability since the devices can inter-operate among themselves.
 


Section 18.2
How I/O actually works

In this section we will see how a computer that has external ports connected to peripherals and IN and OUT instructions actually accomplishes I/O transfers.
Fig. 18.2.1 shows a CPU is connected to a tape reader. Four ports are needed for proper communication: two for control, one for commands and a third for actual data.
Ports 0 and 1 are the status ports, port 2 is the command port, and port 3 is the data port. Only the tape drive will put values on the data port, and only the CPU will put commands on the command port, but both the CPU and the tape drive will read and write the two status ports.
[image: https://brahe.canisius.edu/~meyer/253/BOOK/ch18/GIFs/Fig18_2_1.gif]
Fig. 18.2.1: CPU attached to a tape reader, showing four ports
The reason there are two status ports is because one is under the command of the CPU while the second is controlled by the tape reader. Each port should have exactly one writer, although it could have many readers.
A port is a special kind of register that sits at the "edge" of a chip. The word "port" comes from the Latin word for window, as it provides a window into the state of the chip. Each port has a number of flip-flops that latch a value into it, keeping it stable while the values are propagated over to another device, the reader. The reader will latch these signals into its copy of the port, namely the flip-flops on its end that will hold stable the values.
One thing that makes ports different from internal registers of the CPU is that there are timing considerations that must be taken into account. Since the various chips or devices in a communications system have their own internal clock, we cannot count on them being synchronized. Thus, they have to obey a protocol for when to read the values from the port's flip-flops or when to change them. This timing protocol is one of the trickiest aspects of all computer hardware.
When the CPU wishes to send a command to the peripheral, it writes a value into the command port. There may be many possible commands. Here are the most important, encoded using both numbers and words:
	001
	START
	begin reading the tape and transferring data to the CPU

	010
	HALT
	stop reading the tape

	011
	REWIND
	physically rewind the tape back to the beginning

	100
	ALERT
	flash a light on the external case of the tape record to alert the human who is operating the device

	101
	QUERY
	have the tape reader tell the CPU what state it is in

	110
	PAUSE
	suspend sending data until further notice


The peripheral constantly transmits status information back to the CPU via the status register, such as whether the operation completed or experienced an error, or how much data was transferred. If the CPU explicitly asks what the tape reader is doing, perhaps because the reader hasn't responded with data in a while, the reader is obliged to tell it using the status register. In addition, the status register may be used to pace the CPU and the peripheral so that they do not get out of step with each other and lose data.
In our example, the two status ports are two bits long each. Remember, one is for the CPU to give status information to the tape reader and the other is for the opposite.


Here are the codes that the two devices put into their status ports. (TR is short for Tape Reader.)
CPU status port (which the TR reads)

00   CPU is quiescent
01   CPU has issued IN; now waiting for TR to respond
10   CPU has read the TR's result byte and accepted it

TR status port (which the CPU reads)

00   TR is ready to accept a command from the CPU
01   TR is getting the next byte
10   TR has gotten the next byte and it is ready to be read
For each byte read and sent to the CPU, the tape reader and the CPU communicate via these two ports. When the CPU issues an IN command to start the TR working, it sets its port to 01. The TR reads this and knows that the CPU is waiting for it to fetch the byte. While it fetches the next byte off the tape, the CPU continually reads the TR's status port, waiting for it to change from 01 to 10.
Finally the byte is ready and TR puts that onto the data port. Then it sets its status port to 10. The order of these events is critical because if the CPU is told that the data port has the correct value but the TR hasn't yet put that there, the CPU will read the wrong bit pattern.
While the CPU copies the value from its side of the data port into internal registers (such as the main accumulator), the TR spins in a loop looking at the CPU's status register. Until that changes to 10, the TR must wait. Finally the CPU sets its status port to 10, meaning it has taken the data byte out of the port and is done. The TR can go back to square 1 and wait for the next command.
This constant monitoring of a wire, waiting for an event, is called polling. All computer devices that have separate clocks employ polling to coordinate their actions. It is kind of like two people who are working on different parts of the same project. One is always asking the other, "Are you ready?" or "Are you done with that and ready for the next thing?" Inside the CPU's innermost mechanism, every event is synchronized to a common clock and all events have a well-defined order so polling is not necessary inside the CPU itself. Only when there is no common pulse signal and no clear ordering of events is polling absolutely necessary.


Fig. 18.2.2 shows a simple program in the style of the CSC-1 computer that does the CPU's end of the transfer. This program is actually too simple, since it has no provision for stopping and the STD instruction is extremely unrealistic since it stores the bytes into the same variable, overwriting the old values. A real program would probably put the data bytes into an array.
          LDI  001b         ;form the code for the START command
          OUT  2            ;send START command to the tape reader
          LDI  01b          ;put CPU's status into its status port
          OUT  0            ;which the TR reads as "Go read for me now!"

WHILE0:   NOP               ;get data bytes until done (see below...)

                            ;a spin loop to wait until the TR has delivered next
                            ;byte
WHILE1:   IN   1            ;read the tape reader's status
          SUB  DATAREADY    ;compare to 10b, which is data is ready to pickup
          JZ   ENDWHILE1    ;if equal, then done
          JMP  WHILE1       ;else go back to top of loop
ENDWHILE1:NOP

          IN   3            ;read data byte on port 3 from the tape reader
          STD  X            ;store into main memory somewhere (X)
          LDI  10b          ;get ready to write 1 into data accepted
          OUT  0            ;write to status port so tape reader sees it
                            ;the tape reader is now spinning, waiting for CPU
          LDI  100          ;pause the loop to allow the tape reader
                            ;to catch up

WHILE2:   JZ   ENDWHILE2    ;busy loop to waste 100 time units here because TR 
                            ;is slower than CPU
          SUB  ONE          ;It counts down from 100 to 0 by subtracing 1
          JMP  WHILE2       ;...sometime inside this loop, the tape reader sets 
                            ;the status
                            ;   register back to "00" so the CPU will see it
ENDWHILE2:NOP

          JMP  WHILE0       ;do it all over again to read next byte
ENDWHILE0:HLT

DATAREADY:NUM  10b          ;"10" is the code for the Tape Reader saying data is
                            ;ready to get
ONE:      NUM  1
[bookmark: #Fig18_2_1]Fig. 18.2.2: Simple polling program to read bytes from a device
[bookmark: #Fig18_2_2]To stop the whole program, we would have to ask the tape reader if it just sent the last byte, which is called the end of file flag. This end of data flag could either be a status code that is sent through port 1 to communicate to the CPU, or it could be a special data value that signals "no more data." The ASCII system has a number of control characters (between 0 and 31, inclusive) and many of them have mnemonic abbreviations intended for data transmission protocols. For example, the byte value 00000100 (which is decimal 4) is EOT, or "End Of Transmission." It could signal the the data stream is finished.
Alternative, the CPU could set up a counter and get exactly 1024 bytes and then stop. However, the tape reader might not have 1024 bytes to read, so it would still have to signal an "end of data" to the CPU. Likewise, an error or malfunction would require sending this data to the CPU to tell it to abort the loop. If the CPU ever gets into an infinite loop waiting for a peripheral, the whole computer will freeze and the user would see something odious like the hated "blue screen of death."
We have left unanswered many other things, such as techniques to detect end of file on the tape or input errors. Communicating through the status register is the main way this is done. The status register from the tape reader to the CPU would have to have more than two bits to accommodate codes for all possible conditions. Rules for codes and when these codes are set makes I/O programming quite complicated and often messy.
 


Section 18.3
Timing Considerations

The CPU is usually much faster than any peripheral device. In fact, it would not be strictly necessary for the CPU to immediately return to the top of the loop after getting a byte if it "knew" that the device was so slow as to cause a significant time lapse between bytes. In this case, the CPU would not have to set the data accepted bit to 1, and in fact no data accepted bit would even be needed! The CPU could turn off the data ready bit when it snarfed up the data byte, and then go off and do some other work for a while. Eventually, it would return to CHECKCTL just about the time it expected the next byte to appear from the tape drive.
Is it realistic that the CPU is so much faster than the peripheral that it can risk doing other work while waiting for the peripheral? Often, yes. Let's take a look at some numbers.
Older mainframe tape drives used to run at 75 ips (inches per second). The data was recorded at a density of 1600 bpi (bytes per inch). Due to blocking, data was never recorded in a solid, continuous stream on these tapes because flaws and imperfections would make it dangerous to count on the tape being perfect over a long stretch. So these interblock gaps on the actual tape would give the CPU a short breather; these gaps are dead space on the tape, places where no real data exists.
Pretending that the tape is continuous, that there are no interblock gaps, 75×1600 means 120,000 bytes per second coming out of the tape drive. This sounds like a lot, but taking its reciprocal, this rate is 0.0000083 seconds/byte, or 8.3 microseconds per byte, or 8300 nsec per byte. If the computer is performing one million instructions per second, which is quite a slow rate nowadays, it takes one microsecond per instruction. Thus the tape drive is more than 8 times slower than the CPU and a lot of the CPU's time would be spent vainly checking the data ready bit and finding it to be 0.
Another alternative, one that is extremely difficult due to the electronics, is to evenly match the I/O device with the processor. The computer could input a byte from the data port, store it into memory and then execute a fixed number of NOP instructions before going back and getting the next byte. Why this doesn't work too well is because it is hard to synchronize the tape drive with the CPU -- get them started at exactly the same time. And there might be some sort of unevenness in the speed of the tape drive, perhaps due to unevenness in the speed of the tape motor. Since most CPUs are vastly faster than 8 times the speed of a peripheral, it makes more sense to use control signals like those we introduced above.
Section 18.4
Protocols

The exact nature of the signals on these ports -- what values will appear and when, is called a protocol. Here are some of the things that a protocol specifies:
· the number of bits used for data accepted and data ready, and what their positions are in the control byte
· the exact sequence of values in the control byte
· who should set which bytes and when
· what character code will be used for the data (ASCII, EBCDIC, other)
· how the device tells the CPU when its done
· how the device tells the CPU about errors or abnormal conditions
· how the CPU gives commands to the device (start, stop, give me your status, wait for a while, etc.)
· how the CPU discovers when the device is out of data
Then there are the even messier but equally important details of the physical protocol:
· how many pins the connectors have
· what the voltages are on each pin
· the shape of the connector
· other electrical details such as how long the wires can be from connector to device
All these things must be decided upon and published so that both CPU and peripheral manufacturers know what to build so that their devices will talk to each other.
SCSI is an example of a standard. SCSI, pronounced "scuzzie," stands for noble concept: Small Computer Systems Interface. It specifies connector shapes, voltages, and a protocol. SCSI disk drives are disk drives whose controller adheres to the SCSI protocol and whose external connectors are the right shape for SCSI plugs. There are SCSI CD-ROMs, tape drives and printers.
Other disk drives and other peripherals might be specific to a certain manufacturer's standard. For example, many disk drives, printers and mice are specific to one type of personal computer. Such a peripheral built for the Macintosh cannot be used with an Intel-based machine, like a Gateway or a Packard-Bell. Apple Desktop Bus (ADB) is one standard specific to Macintoshes. Though the guts of the disk drive or the printer or the mouse might be identical from one peripheral to the next, their connectors, which is their electrical interface to the world, are built to one standard or another.
In recent years, a new and very fast serial bus, called the Universal Serial Bus or USB, has become standard on most personal computers. It is vendor-independent and standardized so that devices built by many companies can be used on Macs or PCs or UNIX workstations. One great thing about USB is that it permits a tree of connections to be made, not just a daisy-chain, permitting up to 127 devices to be connected to a computer with very fast response time. The data rate on a USB wire is 12 MBps (12 megabits per second) which is faster than the original Ethernet speed of 10 MBps!
Even faster serial buses are available now for extremely data intensive peripherals like videocameras. The Firewire bus is an example of this.
 


Section 18.5
Device Drivers and System Calls

Another problem that arises with peripherals is how the operating system talks to them. Though there are protocols, there are many commands that the CPU can issue to the peripheral to make it work in the desired way. Special subroutines, called device drivers, are incorporated into the operating system code to issue commands to peripherals.
For example, in UNIX the system call read() is used to get input from virtually any type of peripheral: disk drive, keyboard, tape, network controller card, etc. Once UNIX begins to do the read system call, it inspects the fd (file descriptor) number given as the first parameter and determines what type of device this is by looking into system tables. This tells it which device driver to use in issuing commands. The device driver code begins to execute and further processes the parameters and then issues low-level commands to the peripheral to accomplish the data transfer.
Peripheral devices are usually composed of two pieces: the actual device which does the input or output, and accompanying control circuitry called the controller. Controllers can be quite extensive and are oftentimes computers in their own right. As an example, the old Commodore 64 computer had a 6502 chip as its main processor. When a floppy disk drive was added later, the disk drive was encased in its own box and connected to the C-64 via a serial bus wire. But the controller to the disk drive was another 6502 computer!
A controller makes it much easier to write device drivers because it allow the commands coming from the OS to be somewhat high level. For each such command, the controller issues sequences of very minute and specific instructions to the device. For example, a controller for a floppy disk drive must turn the main motor off when a read or write is requested. It must also monitor that the motor is not left running too long because floppy disks are in constant contact with the read/write head so they will wear out quickly if they spin all the time. (Hard disks are usually spinning all the time so this is not an issue.) Then the stepper motor must be turned on and off in order to advance the read/write head to the next. Finally, the data must be gated to the bus at the right time and status information delivered back to the OS.
Another reason why controllers are used to "micro-manage" the actual peripheral devices is because sometimes the devices are running fast enough that they need lots of attention in a timely fashion. With the CPU often doing other tasks and monitoring other devices, some control signals might be missed with disastrous consequences. Therefore, it makes sense to relegate fine control to a special processor chip and allow the OS to make broad, abstract commands like read sector 57 of track 91. Even that is a fairly detailed command, from the user's point of view. The operating system is the final shield of such messy details from the user.
Thus there is a hierarchy of control mechanisms and a ladder of abstraction, going from the most abstract command in the user program to a much more specific one in the operating system to a command in the controller, which then issues the lowest level of commands by setting wires to 1 and 0 at the appropriate times.
Device driver programming is a specialty niche that does not appeal to all programmers, since it involves many tedious and minute problems. A high degree of reliability as well as efficiency and economy are required of device driver programs, so sloppy or careless programmers need not apply for those jobs. However, it could be extremely rewarding to know that millions of people will depend upon a little snippet of code which is executed billions of times each day.
 


Section 18.6
Multiplexing

If each peripheral device occupies three ports, as shown in section 2 with the tape reader example, all of the chip's ports will quickly be consumed by a few devices. Many chips only have 4 or 8 ports simply because there isn't enough room on the edge of the chip for more metallic pads.
One mechanism that was used for a while is to multiplex peripherals through another level. A device would plug into two ports of the CPU and it would channel I/O commands to a variety of peripherals attached to it. Many mainframes used this method to connect a bank of terminals to the mainframe, or even several tape drives. Fig. 18.6.1 illustrates this.
[image: https://brahe.canisius.edu/~meyer/253/BOOK/ch18/GIFs/Fig18_6_1.gif]
Fig. 18.6.1: Multiplexor as a way of multiplying ports
[bookmark: #Fig18_6_1]The multiplexor could use one of several methods of identifying the recipient of the signals. The first, time division multiplexing, assigned time slots to each of the connected devices. If there were three tape drives connected to the CPU through a multiplexor, then during time slice 1, tape drive 1 would pass its signals through. During time slice 2, tape drive 2 would use the wires, and the multiplexor would electronically connect it to the CPU's port, and so forth. The multiplexor (and the CPU) must be faster than the attached devices in order for no signals to be missed. In the example of Fig. 18.6.1, the multiplexor should be at least three times faster than the disk drives. Another name for this method is round robin because the devices each get their turn in a circular fashion.
The other method, strangely named statistical multiplexing, allows the devices to be identified whenever a command for them arrives from the OS, and likewise when they sent data to the OS. An id number is appended to every command from the OS and every response from the device has an id number attached to it. This method makes more sense than round robin if not all the devices are equally active or if the attached devices are a little faster than they could be in round robin. An especially active peripheral might send a lot of data to the CPU while the others are inactive, and in statistical multiplexing it wouldn't have to wait until its next time slot rolled around.
 


Section 18.7
Memory Mapped I/O

Another way of communicating with peripherals (through their controllers, of course) is to use the system bus and pretend that the registers in the device controller are words in memory. This clever idea, called memory-mapped I/O, because I/O devices are mapped into fixed regions of the memory address space, gives a potentially unlimited supply of virtual ports. Today it is the commonest way to do I/O and even computers that have explicit IN and OUT instructions with real ports augment their capacity with memory-mapped I/O. Some chips, like the Motorola 68000 which was used to power the early SUNs and Macintoshes, had no explicit I/O instructions, relying totally on memory-mapped I/O.
The term used by some authors to denote explicit I/O that uses IN and OUT instructions is isolated I/O, as opposed to memory-mapped I/O.
Fig. 18.7.1 shows the memory address space of a fictitious computer and where I/O peripherals have been assigned. There are 8 address bits, so there are only 256 addresses, from 00000000 up to 11111111. 8 of these addresses are allocated to device A while 8 others are allocated to device B. Memory gets all the rest. All the allocated words for a single device are contiguous, although main memory's addresses are not necessarily contiguous.
[image: https://brahe.canisius.edu/~meyer/253/BOOK/ch18/GIFs/Fig18_7_1.gif]
Fig. 18.7.1: Memory address space showing where two peripherals' registers are mapped
The words of memory that are set aside for an I/O controller are equated to its control registers, which play the same role as the ports in section 2.
When the CPU wants to inspect an I/O controller's register, it issues a memory read to the system bus specifying the address that corresponds to that peripheral's register. When it wishes to give a command or send actual data, it issues a write to the memory word corresponding to the peripheral's register.
The memory is never really involved at all during these memory-mapped I/O operations. It completely ignores any read or write commands that specify addresses not within its range. Thus, the name of this type of I/O arrangement, memory-mapped I/O, is misleading because what is really mapped is the memory address, but memory address-mapped I/O is a mouthful and computer programmers are in a hurry.
How does memory-mapped I/O actually work? Every device that attaches to the system bus has a decoder that takes in the address wires and interprets them. If that address is within the range specified for that device, then an "activated" wire goes high, similar to the MA (memory active) wire of memory. If the address is not for that device, then the activated wire is low and the device ignores the bus. Main memory also has a decoder that enables it to ignore the read and write commands that are meant for peripheral devices.
Fig. 18.7.2 shows a system with two peripherals, the CPU and main memory.
[bookmark: #Fig18_7_1][image: https://brahe.canisius.edu/~meyer/253/BOOK/ch18/GIFs/Fig18_7_2.gif]
Fig. 18.7.2: A simple memory-mapped I/O system


Fig. 18.7.3 shows the gates in the decoder of each device which set the activated wires. Each device also has a decoder that determines the specified address that is on the address bus, just as with main memory.
[bookmark: #Fig18_7_2][image: https://brahe.canisius.edu/~meyer/253/BOOK/ch18/GIFs/Fig18_7_3.gif]
Fig. 18.7.3: Decoder logic for device active wires;
refer to Fig. 18.7.1 for the addresses
Once memory-mapped I/O is in place, the algorithm for communicating with a peripheral is essentially no different from the earlier example that used IN and OUT. Instead of IN, the CPU issues a LOD instruction to fetch a word from "memory" and instead of OUT, it issues a STD instruction. The addresses given are the mapped addresses of the control, status and data registers of the peripheral's controller.
Fig. 18.7.4 is a reprise of Fig. 18.2.2, with the substitution of LOD and STD for IN and OUT.
In order to translate from the isolated I/O version to memory-mapped I/O, we have to know where the "registers" are in memory. Following is an assignment of three memory words to the three registers needed for a tape reader:
      memory
      address  register   writer   reader    function
      ------   --------   ------   ------    --------
        128       0        CPU      TR       status of CPU
        129       1        TR       CPU      status of tape reader
        130       2        CPU      TR       command
        131       3        TR       CPU      data sent from tape reader
Here's the program:
          LDI  001b         ;form the code for the START command
          STD  130          ;send the START command to the tape reader
          LDI  01b          ;put the CPU's status into its status port
          STD  128          ;which the TR reads as "Go read for me now!"

WHILE1:   LOD  129          ;read data ready bit from status register
          SUB  DATAREADY    ;compare to "01"b
          JZ   ENDWHILE1    ;if equal, then done
          JMP  WHILE1       ;else go back to top of loop
ENDWHILE1:NOP               ;this is outside the loop, ready to go on

          LOD  131          ;read data byte in data register
          STD  X            ;store into main memory somewhere (X)
          LDI  10b          ;get ready to write 1 into data accepted
          STD  128          ;write to the CPU's status register
                            ;the tape reader is now spinning, waiting for CPU
          LDI  100          ;pause the loop to allow the tape reader
                            ;to catch up
WHILE2:   JZ   ENDWHILE2    ;waste 100 time units here
          SUB  ONE          ;by counting down from 100
          JMP  WHILE2       ;to 0 by subtracting 1
                            ;... sometime inside here the tape reader sets
                            ;    its status register back to "00"
ENDWHILE2:NOP

          JMP  WHILE1       ;do it all over again to read next byte

DATAREADY:NUM  01b          ; 01b is the code for the CPU saying "I'm waiting!"
ONE:      NUM  1
[bookmark: #Fig18_7_3]Fig. 18.7.4: Polling program to read bytes from device A, using memory-mapped I/O
[bookmark: #Fig18_7_4] 
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