Section 16.1
Types of computer buses

Components of a computer need to communicate values between themselves. Registers must send binary numbers to the adder. Decoders must get the address to be decoded. Memory must both send and receive data. And control signals of various types, issued by the control circuitry whose heart is either a microcode engine or a hardware DFA, flow around the system. Values move around on pathways called buses.
A bus is nothing more than a group of wires that send logical values (1s and 0s) between computer components. Each separate wire in a bus has its own meaning.
The word bus comes from the Latin adjective omnibus, meaning all or everyone. Like their diesel-guzzling counterparts on the streets, computer buses carry all the data from one place to another.
Following are major following of buses in a computer:
1. internal or local bus -- these are buses that connect internal components of the CPU, such as registers, the ALU and the control unit
2. external or system bus -- this is a bus outside the CPU that connects it to the memory and various I/O devices. There is often just one of these although mainframes and supercomputers often have 2 or more.
3. device bus -- this is a bus that connects devices to the main CPU or to each other. A SCSI bus may connect several disk drives together, for example.


Every computer is made up of a hierarchy of buses. There are local buses inside the CPU to move data around the main data path. The CPU connects to the memory and I/O devices via the system bus, and some of the I/O devices themselves connect to other buses. In fact, a network, be it a local area network (LAN) or a wide area network (WAN) is really just a bus. Fig. 16.1.1 shows a hierarchy of buses in a computer system.
[image: https://brahe.canisius.edu/~meyer/253/BOOK/ch16/GIFs/Fig16_1_1.gif]
Fig. 16.1.1: A computer system with multiple buses
[bookmark: #Fig16_1_1] 


Section 16.2
Characteristics of buses

There are many design issues that go into making a bus that is both efficient and cost-effective and as always there are trade-offs. Very fast buses require high quality materials and lots of them, so they cost more. Cheaper buses, often put into low-end computers such as personal computers, skimp on certain things and hence are slower.
All external buses and even some internal ones group wires in terms of function. There are three majors groups of wires based on function:
	     
	· data wires -- wires that carry actual data, character or numerical (either integer or floating point)
· address wires -- wires carrying an address, always an unsigned binary number
· control wires -- wires that carry signals to turn on or off various components or to control the flow of data and addresses


A good example of the control wires are the two we used to communicate with memory in previous chapters: MA and RD. MA, memory active, tells whether or not memory is being summoned to do something, while RD, read, tells whether the memory is being read or written. We also explored in an exercise an alternate way to encode these operations using two different wires. (There were three situations: memory read, memory write, and memory quiescent.) Note that in earlier chapters we used WR (write) instead of RD (read), but since they are opposite and symmetric, it really doesn't matter which wire we use.
One way to cut down on the cost of buses is to multiplex data values on a smaller number of data wires. This has been a standard practice in the realm of cheap microcomputers since their introduction in the late 1970s. For example, suppose that memory reads and writes one byte at a time and there are 1,048,576 bytes that in the memory. This would require 20 address wires, 8 data wires and 2 control wires. However, buses are expensive and the more wires the more expensive the bus. Also, their connectors to other devices are expensive. Some chips do not have enough area to support a large pinout, the count of all wires that communicate between the outside world and the chip, each one terminating in a pin from the ceramic package that encloses the chip.
Multiplexing means reusing the same component for different purposes, and in terms of buses it means that a few data wires are used for double duty. One scheme would have only 4 data wires. To send a single byte would require two time cycles: put the first four bits onto the bus and send it during phase 1, and then send the second four bits during phase 2. The trade off is we sacrifice speed for hardware since there are fewer wires but it now takes twice as long to send a single byte between memory and the CPU, or between memory and an I/O device. But fewer wires also means a smaller pinout, or a smaller chip, and also less complexity in the circuit.
Fig. 16.2.1 shows the contrasting situation of sending 10011101 over 8 wires in one time unit from device A to device B, and sending that same byte over 4 wires in two time units.
[image: https://brahe.canisius.edu/~meyer/253/BOOK/ch16/GIFs/Fig16_2_1.gif]
Fig. 16.2.1: Time multiplexing of data wires
[bookmark: #Fig16_2_1]This kind of sharing is called time multiplexing because the sharing occurs in different time periods. When we looked at multiplexor circuits many chapters ago, we saw a different kind of multiplexing, one where many components shared the same wire, but only one device could use that wire at a single moment in time. Though this, too, is a form of time sharing, it is logically different and is called device multiplexing since the sharing occurs between different devices. Computer buses also use device multiplexing, even if they do not use time multiplexing.
It would also be possible to multiplex the address onto a smaller number of wires, but this is less common since the address must be entirely present and available to the decoder before that circuit can begin the process of decoding.
The logical extreme would be to have only one data wire, which is often done. If there is only one data wire, we say that we have a serial bus since all the data bits flow in a serial or sequential fashion in time, one after another. The contrasting scheme, where there are many data wires and they all transmit a part of the value at the same time, is called a parallel bus because the data values are traveling together in parallel over the wires from their source to their destination.
Parallel buses are obviously much faster than serial buses. For example, if we used a serial bus to transmit bytes, it would take 8 times as long to transmit a byte this way than with an 8-bit parallel bus. Thus, most internal buses in a computer are parallel.
However, buses that connect I/O devices to a computer are serial. Most microcomputer manufacturers use such low cost buses to connect slow devices like printers and keyboards to computers. The time it takes for a keyboard to transmit a byte is significantly less, even using only one data wire, than it takes for the mechanical key to spring back into position, and users never know the difference. However, disk drives can often transmit data at very high speeds, so a parallel bus usually connects them to other components like memory and the CPU.
One type of bus that is enormously important to today's users is the network connection, and that is virtually always serial due to the high cost of telephone connections. In fact, there is only one wire and all the control, address and data functions take their turn on this one wire! How do the two ends of a network wire, be it a telephone line or coaxial cable on an Ethernet LAN, know when a data value is being transmitted instead of a control or address value? Basically, bit patterns on the one wire are recognized and then decoded into a packet, or a time-sequence of bit patterns that put all the control, address and data information into their proper time slots.
 


Section 16.3
Hardware issues

Since we are not studying electrical engineering, we shall gloss over some of the messier details on how devices connect to buses. However, a few words are in order.
First, many buses have slots into which connectors are plugged. This is electrically identical to wall receptacles in your house where you plug in electrical appliances so they can get the juice to operate. Actually, a better analogy might be the telephone plug in the wall. Any telephone receiver may be plugged into different houses and it will respond although it acquires a different address, or phone number, when it is moved to a different place. In a similar way inside a computer, the slots have addresses to which they respond.
There is usually an interface chip which sits between the actual bus wires and the device that logically plugs into it, such as memory or the CPU. This interface chip may do useful things like match voltage or amplify the signals so that they will be strong enough to assert logic 1 or 0 on the bus wires. Internal buses seldom have these problems since they are always connected and the chip designer knows how much current is passing through at any point and can match things up.
External buses, such as system buses, often connect heterogeneous equipment, often from different vendors, and it must all work together. A new trend, plug 'n' play as it is called, has emerged with Windows 95 (although a form of it was present in some earlier computers such as the Macintosh). In this system, no special addressing must be done in order to get the other devices on the bus to recognize the unit just plugged in. This is done automatically by the devices through sending and receiving signals to each other. In the (recent) past, you would have had to have changed configuration files when you added new hardware to your IBM PC or clone.
At the electronic level, tri-state buffers are often used to electrically disconnect the wires so that one device can be totally unaffected by what is going on in the bus, although it can be reconnected in nanoseconds by simply sending a signal to the tri-state buffers. Another type of connection is called a wired-or where a number of wires carrying logic values are electrically connected to a common wire. If one or more of those wires gets a high voltage, signaling logic 1, the common wire also gets a high voltage, thus getting logic 1. Since voltages are additive and since logic 1 is usually defined to be anything of +12V or higher, this makes a cheap form of OR gate.
Suffice it to say that it is a challenge to get different digital devices to communicate effectively on a single set of wires. In order to avoid reinventing the wheel every time a new computer or new device is introduced, hardware designers make up a list of characteristics regarding their bus and what can connect to it. We call such a standard a bus architecture. Up till recently, every vendor has its own bus architecture. A few of them are Massbus, Microchannel, Omnibus, Q-bus, Multibus and S-100 bus.
Recently there has been a trend towards more standardization, as exemplified by the SCSI-bus that allows many different devices to interconnect, such as printers, disk drives and CD-ROM players. SCSI stands for "Small Computer System Interface." In the past, vendors did not want users to be able to mix and match because they might buy components from competing vendors. Thus, locking customers into just one line of equipment was standard practice for decades and is only now vanishing as vendors see that having an open architecture allows other vendor's customers to come to their own market.
An example of using a bus standard to try to accomplish a business goal was IBM's Microchannel that was part of their PS/2 line of computers, introduced around 1987 and meant to grab back market share stolen by all the clone vendors of the immensely successful IBM PC. It did not help IBM at all and in fact many shunned the PS/2 because of its incompatibility.
 


Section 16.4
Coordination in the computer world

Since a bus is basically just a highway between two devices, there is always a directionality implicit in the transfer, that is, there is always a sender and one or more receivers. One component has to initiate the transfer and it usually does this by asserting logic values on the control wires. The receivers pay attention and notice changes in the values. We call the sender the initiator because it initiates or starts the activity. The other device is called the responder because it waits until the activity starts and it receives a start signal.
If more than one component tries to control the bus by setting the control wires to different logic values, then chaos will result. Thus, only one device can be in control at any point of time, that device is called the bus initiator. The device to which the control signals are directed is called the bus responder. These roles flip back and forth, as one device might be the initiator for one transfer and the responder for the next. It is also possible for there to be multiple responders in a single bus operation.
Terminology that was once thought colorful and evocative has since changed due to the desire to include everyone and not conjure up images of a dark past. Such is the case with the issue of coordination between computer devices. While we used to call an initiator device the "master", the the responding device the "slave," such terms are now eschewed, no matter how cute or even accurate they once were thought to be. Be aware that in many hardware textbooks you may see the terms bus master and bus slave.
Fig. 16.4.1 shows the CPU and the main memory connected to a system bus. The slashes across the wires indicate how many wires there are: 2 control, 8 data and 20 address. This keeps the huge amount of detail in the diagram down to a minimum.
[image: https://brahe.canisius.edu/~meyer/253/BOOK/ch16/GIFs/Fig16_4_1.gif]
Fig. 16.4.1: Simple system bus configuration
[bookmark: #Fig16_4_1]To perform a read operation, the CPU takes the lead by putting an address of the desired byte on the address wires, and setting both control wires MA and RD to 1. The memory is designed to watch for MA to go high, at which point it absorbs the operation code (RD) and the address and begins to decode that address. After a delay, it puts the desired byte onto the data wires, which the CPU absorbs. In a tightly coupled system, the exact timing between the CPU and the memory is well defined and those two circuits "know" how much time they have to wait. In a more heterogeneous system, other mechanisms must be used.
During a read operation, the CPU acts as the initiator while memory always acts as the responder, even though the data is flowing from memory to the CPU during the latter part of the operation. The identification of who is the initiator and who is the responder depends upon which component starts the bus operation by putting values on the control wires. Since memory never takes the lead in this way, it is always the responder.
A memory write operation starts with the CPU asserting MA=1 and RD=0, putting the address where to write the byte on the address wires, and the actual byte to write on the data wires. The memory responds internally when it "sees" MA is 1 and it absorbs all these values and stores the value. In some cases, the CPU may simply start the memory on a write and then go off to do other useful work. For a read, however, the CPU must wait the full amount of time for the memory to fetch the desired value.
Thus, we have seen that there are several logical operations on buses, even though the data is always just flowing between two devices in one direction. The read operation saw data flowing in both directions, while a write has data flowing in just one direction, from CPU to memory.
 


Section 16.5
Multiple bus initiators and Arbitration

The system in Fig. 16.4.1 is quite misleading. For one thing, it has no input/output devices, without which no computer can do anything useful. Fig. 16.1.1 at the beginning of the chapter shows several I/O controllers plugged into the system bus. These boards are really small special-purpose computers which communicate with the memory and the main CPU through the system bus. In fact, the standard way for many systems is to communicate solely through the main memory.
I/O controllers often act as bus initiators because they need to initiate transfers of data from their attached devices (mice, disk drives, keyboards, tape drives, light pens) to memory, or from memory to various output devices (monitors, printers, motors.)
As soon as there are two bus initiators there are problems, for what happens when both initiators attempt to assert control signals? In order to avoid chaos, only one bus initiator should have control of the bus at any time. One scheme is for there to be a bus busy wire. Any device that acts as a bus initiator sets this wire to 1 as a flag for all other potential bus initiators to see. If any would-be initiator sees that the bus is busy, it defers action until the wire changes to 0.
There are problems with this scheme. One is that it is possible for two bus initiators to assert the busy wire (set it to 1) at the exact same moment, or so close to the same time that it is simultaneous for all purposes. The two bus initiators need to be able to figure out that something strange has happened and arrange to stop and retry again later.
This brings up the fact that there must be rules of behavior in order for all the bus devices to get along without clobbering each other's data. These rules are called a bus protocol. Every bus architecture has a published protocol attendant to it and any device manufacturer must conform to the protocol or else the device cannot be attached to the bus without problems.
An analogy to protocols in buses is standards in electrical wiring and telephone circuitry. There are rules about what kind of wire to use, what shape to make the receptacles, how much current and how high a voltage is used, and so forth. In addition to these static or factual rules, there are dynamic rules which govern sequences of actions. In the world of telephones, the completion of a number dialing results in a signal that causes the other party's phone to ring. If they do not answer within a certain time period, the telephone circuitry may cut it off. Also, if the phone is taken off the hook but no number is dialed within a certain amount of time, the telephone company causes a loud buzz or beep to be heard or plays a message about putting the receiver back on the hook.
The bus contention method presented above is a decentralized control protocol. When multiple would-be bus initiators attempt to gain control, they discover that someone else has interfered and then they back off for a while. It is decentralized because no one circuit is given ultimate decision power -- they all share the power in a polite manner. Such decentralized protocols are often used on local area networks, such as Ethernet.
However, most buses use a centralized control protocol because it is faster and does not deteriorate under heavy use. In one widely used scheme, would-be bus initiators have to request and get permission to use the bus. Each bus initiator has two wires between it and a special circuit called the arbiter. One wire is called bus request and the other bus grant. When a device wants to use the bus, it asserts bus request. If the bus is free and no one else also has their bus request wire asserted, the arbiter automatically grants control to the requester by asserting bus grant to that device. Fig. 16.5.1 shows this process.
[image: https://brahe.canisius.edu/~meyer/253/BOOK/ch16/GIFs/Fig16_5_1.gif]
Fig. 16.5.1: Centralized bus control protocol using an arbiter;
The CPU requests the bus and gets control over it.
Fuzzy gray indicates 1 on the wire.
If more than one would-be initiator assert their bus request lines at the same time or very nearly the same time, the arbiter senses this and randomly selects one of them by asserting that the grant line of one of them, keeping the others unasserted. The arbiter makes a choice, like a judge that is settling a deadlock in a dispute between two parties, and ideally the final choice is arbitrary.
Fig. 16.5.2 shows several devices asserting their bus request lines, but only one is given control of the bus.
[bookmark: #Fig16_5_1][image: https://brahe.canisius.edu/~meyer/253/BOOK/ch16/GIFs/Fig16_5_2.gif]
Fig. 16.5.2: Multiple bus initiators contend for the bus;
Both I/O controllers request the bus but only one gets control
[bookmark: #Fig16_5_2]The devices that attach to the bus and to the arbiter obey the protocol that they do not assert any control signals on the bus until their own bus grant line goes high. If they were to "cheat," the signals on the bus would be hopelessly confused and things would go haywire.
When a would-be bus initiator is denied use of the bus, it must wait until the current bus initiator is finished with its bus transaction, which might consist of several steps, as we saw above in the memory read scenario. The slighted initiator is usually in an electronic state where nothing can happen until the bus grant wire goes high, so it automatically waits (and waits "patiently", if anthropomorphic emotions can be attributed to wires and gates!) until the arbiter gives it control.
It is important to realize that a device may be a bus initiator some of the time and a bus responder at other times. For example, an I/O device may be a responder while the CPU is the initiator in one bus transaction. Later that same I/O device may become the initiator while the memory is a responder. To do input, the CPU transmits a command to the I/O controller, such as "read the next 100 bytes from your tape drive and put it into memory at location XYZ." The I/O controller, after getting the command from the CPU, carries it out by becoming bus initiator and copying the data into main memory.
As an endnote, we might wonder how we could possibly build a "fair circuit," that is, a device which would truly randomly choose between one bus initiator and another. The SR latch discussed in an earlier chapter is one way of doing this. By setting both S and R inputs to 1, something not normally done, the circuit oscillates until both inputs go off, and then it jumps to one of its two stable states, in effect randomly choosing Q or Q' to be 1.
 


Section 16.6
Bus timing

Buses have to solve a very thorny problem that does not arise within the CPU, which is how to coordinate electronic events. Within the CPU, the designer can simply make sure that the longest data path governs the maximum amount of time it takes for signals to travel from one end of the logic circuit to the other. In a bus, many diverse components must fit together and work without interference, and they cannot be manufactured to be in perfect accordance with each other's timing.
So a mechanism from the world of music is used -- the conductor. In a symphony orchestra, the conductor stands on a podium where all the musicians can see him or her. By waving a wand in rhythmical fashion, the conductor establishes a beat which is used to coordinate the timing of all the events in the orchestra. The violins, for example, see a sheet of music in front of them divided into bars filled with beats. These bars and beats divide time up into units so that music can progress. It is the job of the conductor to say, by waving the wand, just exactly how long a single beat lasts.
Electronic circuits are not musical by nature, although many fabulous things are done nowadays with digital synthesizers, but there needs to be a conductor that establishes a beat. A special device called a clock generates a series of pulses which are used like the beats of a conductor. Other circuits change their state by synchronizing with the pulses coming out of the clock. (To synchronize means "to come together in time," and means in general to coordinate two or more actions so that they happen at the same time.)
Clocks in computers are formed by applying electric current to certain crystals. Quartz is often used for this purpose. When electricity is applied to a quartz crystal, it expands and contracts rhythmically as the electrons travel through it. This rhythmical change in the shape of the crystal can be used to cause changes in the voltage, thereby emitting a series of on/off pulses at a very high frequency. When you buy a new Pentium that has a 166 MHz clock, you are buying a computer with a clock that pulses 166 million times per second.
Frequency refers to how often cyclical changes occur within a specified time unit. Frequency is measured in Hz, which is pronounced "hurts" and comes from Heinrich Rudolph Hertz, a German physicist (1857-1894) who studied electromagnetic radiation. Period refers to how long one complete cycle takes, and is the reciprocal of frequency. These terms apply to events or signals that recur repeatedly, or periodically.
For example, suppose that you get 12 paychecks in a year and they are equally spaced in time. Thus, the frequency of getting paid is 12 cycles per year, where cycle is hereby defined to be the time between pay periods. The period is how long one cycle lasts, and is 1/12 (one twelfth) of a year in this example.
Similarly, if a computer's clock pulses 166 million times per second, that is the frequency, 166 million cycles per second. One complete cycle is comprised of a time when the signal changes to a certain voltage level and then drops to another. Fig. 16.6.1 shows this as a smooth sine wave:
[image: https://brahe.canisius.edu/~meyer/253/BOOK/ch16/GIFs/Fig16_6_1.gif]
Fig. 16.6.1: Sine wave representing clock pulses
3 Hz = frequency, 1/3 seconds = the period
To say that the frequency is 166 million cycles per second, or 166 million Hz, means that the upper and the lower bumps form one cycle and repeat themselves 166 million times every second. Thus, the period of one cycle is 1 divided by 166 million, which is 0.0000000060241 seconds or 6.0241 nanoseconds.
Every system bus has its own clock which dictates how fast signals can change on the wires of the bus. Components which attach to the bus must obey the clock and perform their actions within the time cycles dictated by the bus's clock. There are other clocks within the attached components: the CPU has its own internal clock which regulates how fast it performs instructions, and the various I/O devices have their own clocks, and memory may have its own clock. But all components have to obey the clock of the system bus if they wish to use this common pathway.
In the following discussion we will look at a hypothetical bus and discuss how timing signals work on it as the CPU communicates with memory. Keep in mind that what we will be studying is a vastly simplified version of real buses.


[bookmark: _GoBack]Fig. 16.6.2 shows a timing diagram for the bus when a read operation is occurring:
[bookmark: #Fig16_6_1][image: https://brahe.canisius.edu/~meyer/253/BOOK/ch16/GIFs/Fig16_6_2.gif]
Fig. 16.6.2: Read operation on simplified fictitious bus
This is really a graph showing activity on the various wires of the bus over time. Some wires are single lines, such as RD, MA and Clock. There are two voltage levels: high and low, with high being used to represent logic 1 and low being used to represent logic 0. The clock cycles back and forth between logic 1 and logic 0.
Other wires such as data and address consist of a group of wires. Since drawing 16 or 32 or 20 wires, some going high and some going low, would unnecessarily clutter the diagram, we shall use a standard convention in these types of timing diagrams; whenever valid data (logic values which we are interested in) are present on these wires, we draw an elongated diamond shape. This can be seen above on both the address and data wires. Remember that there are 1s and 0s on these wires all the time that the power is on, but they are not valid or interesting 1s and 0s until the diamond starts.
All the signals except the clock above show another convention that seeks to imitate physics, namely that when a signal changes from low to high or high to low, there is a slight slope as it moves to its new value; it does not change instantaneously. In reality, no wire ever changes its voltage level instantaneously due to the inertia of the electrons. The clock signal is shown as a sharp "square wave" only because it changes from low to high and vice versa in a much shorter time span than the other signals.
The bus's clock is what generates the clock signals above. The bus initiators and responders are set up to put new values on the wires and read values off the wires only at certain moments of time, always on a transition of the clock from high to low. This is done because the values on the wires must be copied into flip flops at the junction between the bus and the component. Then the component copies the values out of the flip flops into its other circuitry. Recall that flip flops are edge-triggered memory devices, which means they latch the new value into their memory only when the control wire makes a change in voltage level (and only in one direction.) Therefore, we assume that all the interface registers, which are arrays of these flip flops between the bus and the component, are negatively edge-triggered, i.e. they latch the new value only when the bus clock pulse goes from high to low.
Fig. 16.6.3 reinforces the idea of registers as go-betweens for the bus and the components.
[bookmark: #Fig16_6_2][image: https://brahe.canisius.edu/~meyer/253/BOOK/ch16/GIFs/Fig16_6_3.gif]
Fig. 16.6.3: Registers are used to interface with the bus
The above bus is called a synchronous bus because all its actions are coordinated by the uniform bus clock signal. Activities such as getting values off the bus can only happen during the transition of the time signal, though some components may put new values onto the bus at other times. But no component "reads" values off the bus until the clock signal makes its downward transition, even though the correct values may be available sooner than that. Synchronous buses are easier to build and debug, although they are a little slower than their cousins, asynchronous buses.
Let's go through Fig. 16.6.2 very carefully. After time cycle T1 begins, the CPU begins a read transaction with the memory by setting the address wires to the desired value. Of course, the CPU has already been cleared to do this by the arbiter. In an earlier time phase, not shown in Fig. 16.6.2, the CPU asserted its bus request line and the arbiter decided that it could be the one to control the bus next by asserting the CPU's bus grant line.
The CPU next asserts RD and MA as a way of saying it wants to read and that the memory should become active. All components attached to the bus latch these bus values into their interface registers at the falling edge of T1, right in the middle of that time period. Then decoders go to work and "decide" whether or not that address applies to this component.
Memory responds by beginning its internal work. For the rest of time T1 and the beginning of time T2, the memory fetches the desired word. Then it puts this value onto the data wires just in time for the falling edge of T2 to occur, at which point the CPU latches that value into its interface register. The CPU also negates MA and RD, signaling the end of this bus transaction. By the time T2 is finished, all the bus control wires must be in the same state as they were in the beginning, right after T1 began, so that they will be ready for the next bus initiator to issue a command. This is the end of one bus transaction and the end of two bus cycles.
A transaction is one complete transfer of data over the bus, while a bus cycle is the time it takes for the bus clock to go high, then go low and then start to go high again. Almost all buses are set up so that transactions take two time cycles in order to allow enough time and enough high/low transitions to occur for the values to be latched into interface registers and for the wires to go back to a quiescent state before the next transaction. In the world of buses, it is not a good idea to shove electronic events too close together in time.
Fig. 16.6.4 shows a write operation on this same bus. The only changes are that the data is valid from the start because the bus initiator (often the CPU) is communicating this data value to the other device right off the bat, not requesting it and waiting for it to appear. Also, the RD wire stays low, indicating this is a write operation.
[bookmark: #Fig16_6_3][image: https://brahe.canisius.edu/~meyer/253/BOOK/ch16/GIFs/Fig16_6_4.gif]
Fig. 16.6.4: Write operation on a synchronous bus
[bookmark: #Fig16_6_4] 


Section 16.7
Asynchronous buses

Some buses are not tied to a clock but rather use a cause and effect basis to decide which signal gets changed next. These are called asynchronous buses because they have no clock and no fixed time cycles. Protocols need to be followed in order to ensure that data gets transferred correctly.
Fig. 16.7.1 shows an asynchronous bus used to read. There are no fixed time periods, although some events have to happen before others. For purposes of discussion, four times, t1, t2, t3 and t4 have been identified below.
[image: https://brahe.canisius.edu/~meyer/253/BOOK/ch16/GIFs/Fig16_7_1.gif]
Fig. 16.7.1: Read transaction on an asynchronous bus
The way this asynchronous read operation works is that the CPU becomes the bus initiator after the arbiter has granted permission to do so. It puts the address on the address wires and sets RD to 1 to request a read. Then it asserts MSYN, which stands for "Master Synchronization," at time t1. This is the electronic form of a phone ringing, waking all the responders up and telling them that there's work to be done. (Note the lamentable use of old terminology, but the acronym is explained to demystify it.)
Exactly which responder does the work is indicated by the address wires. When the right responder (in this case main memory) figures out what to do, it starts to do it, and to finish the job as soon as possible.
When it is done, at the earliest possible moment, t2 in the above diagram, it signals the initiator by setting SSYN (slave synchronization) high. The initiator sees this is high and then latches the data wires into its registers. At t3, the initiator turns off MSYN which is a signal to the responder that the initiator received the value and the responder can (temporarily) go back to an idle state. At t4 all other lines of the bus are cleared in preparation for the next bus transaction, which cannot start until both MSYN and SSYN are both 0 again. This is the signal to the next bus initiator that the bus is now free and ready to use.
In Fig. 16.7.2 we see the same timing diagram for an asynchronous read, except that the causal relationships between the turning off and on of the signals are shown.
[bookmark: #Fig16_7_1][image: https://brahe.canisius.edu/~meyer/253/BOOK/ch16/GIFs/Fig16_7_2.gif]
Fig. 16.7.2: Time dependencies of events in an asynchronous bus
[bookmark: #Fig16_7_2]Each of these events is numbered. e1 is when the initiator turns on MSYN, declaring that all the data and address wires are ready to go and that the main memory should begin its work immediately. e2 is when the memory puts a valid data item on the bus, which is of course caused by the initiator's request. This event, e2, in turn causes SSYN to go to 1, which is used as a signal to say that the data is ready to be read off the data wires. Eventually, the initiator latches the data value and drops MSYN as a signal that it has got it. This is event e4, which causes the responder to know that its work is done, so it drops SSYN, event e5. As long as all the causal relationships are preserved, it doesn't matter how short or how long the stretch of time is between events in an asynchronous bus.
Asynchronous buses could be faster than synchronous buses because devices do not have to wait until a time unit ends to respond to signals. Equipment from diverse manufacturers may be easier to tie together using asynchronous buses, also. On the other hand, synchronous buses are easier to construct and get working. Most asynchronous buses end up waiting for small amounts of time anyway to make sure that signals do not overlaps so there is not a huge savings.
In either case, computer buses, seemingly so simple and secondary compared to the ALU and memory and the control circuitry, turn out to be maddeningly complex and problematical.
 

18

image4.gif




image5.gif




image6.gif




image7.gif




image8.gif




image9.gif




image10.gif




image11.gif




image1.gif




image2.gif
time 2
time 1 in





image3.gif
MEMORY





