Section 8.1
Architecture of the CSC-1, reprise

Fig. 8.1.1 is again the block diagram of the CSC-1 computer:
[image: https://brahe.canisius.edu/~meyer/253/BOOK/ch8/GIFs/Fig8_1_1.gif]
Fig. 8.1.1: Block Diagram of the CSC-1
[bookmark: #Fig8_1_1]In the discussion that follows we will go through all of the wires. Some of this material is redundant from chapter 7, but it is repeated here for completeness and ease of reference.
All wires in the diagram are assumed to be single wires unless there is a slash through the wire with a number next to it, which indicates how many wires there are in the group. Thus, the line coming out of the PC register is slashed with 16, meaning there are 16 different wires coming from the PC register.
Each wire is labeled, although the full names are often implied. The several wires labeled "LD" are really different wires; their full names are prepended by the register into which these wires go. For example, the LD wire going into PC is really called "PC-LD", and the two multiplexor control wires going into the MBR's mux are MBR-MUX1 and MBR-MUX0.
For mux control wires, 1 is the most significant bit and 0 is the least. Each data input to a mux is labeled from 0 up to 3, or 2 or 1 if there are fewer inputs. For those muxes with more than two data inputs (A-MUX, MAR-MUX and MBR-MUX), the input is selected according to the binary number that MUX1/MUX0 form. To illustrate, suppose that we desired the MAR to get the output of S. The wire from S-OUT to MAR-MUX is labeled 2, which is 10 in binary. Thus, MAR-MUX1 must be 1 and MAR-MUX0 must be 0. We will call the several inputs to a MUX its ports. Thus, MARMUX has ports 0, 1 and 2.
The wires coming from registers are labeled by their register's name followed by OUT. Thus, A-OUT, S-OUT, MBR-OUT. The memory has a set of 16 wires which it uses to send data to the MBR register. These are labeled MEM-OUT. All these OUT wires can be referred to individually by number: A-OUT0, S-OUT14, and MEM-OUT3. All registers except MAR are 16 bits wide, so their outputs are labeled 0 to 15. The MAR has 12 bits.
The main memory has two sets of input wires: one set of 12 from the MAR register (MAR-OUT0 to MAR-OUT11) and another set of 16 from the MBR (MBR-OUT0 to MBR-OUT15). There is also a set of 16 output wires going into the MBR-MUX.
The PC register is different from the others in that it has two additional input control wires. One is labeled PC-INCR. When both PC-INCR and PC-LD are 1, the binary number in the PC register goes up by one. Overflow is ignored and the numbers wrap around. Put another way, if PC contains 1111111111111111 (16 1's), and PC-INCR=1 and PC-LD=1, the new value will be 0000000000000000 (16 0's). There is also a PC-CLR input which puts 0 in the PC register, when PC-LD is high.
Memory has two control wires, MA (memory active) and WR (write). If MA=0, the memory is isolated from all of its inputs and outputs. If MA=1 and WR=0, the selected word of memory is copied into onto MEM-OUT, which can then be latched into the MBR register when MBR-LD goes high. If MA=1 and WR=1, the value in the MBR is copied into the selected word of memory. Of course, the value in the MAR register determines which word is read or written.
In some cases only some of the wires in a wire group are used as input and these are labeled as N lsb or N msb at the point where the wire group goes into the register. "lsb" stands for "least significant bits" meaning the lesser N bits of the wire group, as defined by the order of the flip-flops of the register from which they originate, and "msb" stands for "most significant bits," analogously.

[bookmark: _GoBack]Here are the exact wires that route into several components:
IR-OUT0 to IR-OUT11 go into port 0 of MARMUX
IR-OUT0 to IR-OUT11 go into port 1 of MBRMUX
PC-OUT0 to PC-OUT11 go into port 1 of MARMUX
S-OUT0 to S-OUT11 go into port 2 of MARMUX
IR-OUT8 to IR-OUT15 go into the instruction decoder
The ALU is controlled by the three wires F0, F1 and F2. These form a binary number between 0 and 7. Here is what they tell the ALU to put on its output wires:
F2 F1 F0

0 0 0 identity A pass through A's value unchanged
0 0 1 identity TMP pass through TMP's value unchanged
0 1 0 A and TMP bitwise Boolean AND of A and TMP
0 1 1 A or TMP bitwise Boolean OR of A and TMP
1 0 0 not TMP bitwise Boolean NOT of TMP (A ignored)
1 0 1 A + TMP arithmetic addition of A and TMP
1 1 0 A - TMP arithmetic subtraction of A and TMP
1 1 1 unused
The shifter is controlled by the two wires S1 and S2. These form a binary number between 0 and 3. Here is what they tell the shifter to put on its output wires.
S1 S2
--
0 0 do nothing pass input to output unchanged
0 1 right shift 1 bit logical shift only
1 0 left shift 1 bit logical shift only
1 1 unused
There are 16 data outputs of the ALU, collectively called ALU-OUT. The condition outputs C, N, Z and V of the ALU signify the following conditions.
C Final carry-out of the adder is 1;
 signifies overflow if the contents of
 the registers are considered to be unsigned.
V Overflow of 2's complement numbers
Z All output wires have 0
N The value is negative when viewed as a 2's
 complement number (ALU-OUT15=1)

Section 8.2
RTL for the CSC-1

Following is the complete instruction set of the CSC-1 along with the RTL (register transfer language) expressions that define what the instructions do.
LOD load direct A <- m[x] Sets CNVZ bits

STD store direct m[x] <- A

LDI load immediate A <- x Sets CNVZ bits

LDS load indirect A <- m[S] Sets CNVZ bits

STS store indirect m[S] <- A

ADD add A <- A + m[x] Sets CNVZ bits

SUB subtract A <- A - m[x] Sets CNVZ bits

AND and A <- A & m[x] Sets CNVZ bits

OR or A <- A | m[x] Sets CNVZ bits

NOT not A <- ~m[x] Sets CNVZ bits

A2S A to S S <- A

S2A S to A A <- S Sets CNVZ bits

SHL shift left (logical) A <- A << 1 Sets CNVZ bits

SHR shift right (logical) A <- A >> 1 Sets CNVZ bits

JMP jump PC <- x

JZ jump if zero if Z=1 then PC <- x

JC jump if carry if C=1 then PC <- x

JV jump if overflow if V=1 then PC <- x

JN jump if negative if N=1 then PC <- x

JP jump if positive if N=0 then PC <- x

CAL call subroutine S <- PC; PC <- x

RET return from subroutine PC <- S

NOP no operation (nothing)
HLT halt (stop the computer)
The symbol <- means "gets a copy of" so A <- S means that S's value is copied into A.
"x" stands for the lower 12 bits of the IR register, since the machine instruction consists of a 4-bit opcode followed by a 12-bit value. Thus, for LDI, A <- x means that the 12-bit value is directly copied into A. For LOD, A <- m[x] means that x is used as the address of a word of memory that is copied into the A register. Eight of CSC-1's instructions do not have a memory operand, so x does not appear in these instructions' RTL.
Main memory is treated as a large one-dimensional array of 16-bit values. M[x] means use the 12-bit value x from the instruction as the address of the word to either retrieve or change. In two cases, the value from the S register is used to address memory. Though S is 16 bits long, only the lower 12 are used when memory is addressed.
The C operators for Boolean bitwise AND (&), Boolean bitwise OR (|) and Boolean bitwise negation (~) are used in the RTL description, as also the two shift operations. These are strictly logical 1-bit shifts in the CSC-1, however, not arithmetic or circular.
The conditional jumps should be obvious given the if statements in the RTL. In these RTL statements, = means "equals to" rather than "gets assigned."
The CAL instruction is the only one in the CSC-1 machine language that uses a sequence of simpler RTL statements:
S <- PC; PC <- x
The semicolon separates the two primitive RTL segments in this block, sort of like C's semicolon. However, this is not the way it is really done in real circuits. Both reading the current value out of a register and inserting a new value into it can be done in one swoop due to the fact that flip-flops are used. The wires going from PC to S will have PC's current value, and the wires from the low part of IR (denoted by "x") going into PC will have PC's next value. If we strobe the LD wires on both S and PC at the same time, we will effect the desired transfer. The edge-triggered nature of flip-flops ensures that the contents of the registers only change during either the rising or falling edge, a very short period of time which occurs only once when LD is strobed.

Section 8.3
RTL as implemented in control points

There is yet another level at which all machine instructions of the CSC-1 need to be described, which is down to the actual wires: what gets turned on and off, and when. These wires, such as the LD and MUX wires and the ALU and shifter control inputs, are often called control points because they are the places where the operation of the CPU is controlled.
Let us go through some of the mechanisms by which elements of RTL are implemented using the CSC-1 control points. First, whenever a register appears on the left side of the copies operator (<-) its LD wire is set high. Thus, A <- S implies that A-LD is 1.
Next, whenever a register's value or memory's data output appears on the right side of the copies operator, the appropriate mux value appears on the mux control wires for the register on the left hand side that select that register's value. Again, A <- S implies that A-MUX1 and A-MUX0 are set appropriately, since the S input to A-MUX is labeled 2 (10 in binary), requiring A-MUX1=1 and A-MUX0=0
Also, the ALU and shifter control inputs are set appropriately whenever operators appear in RTL statements. Thus, A <- A + m[x] implies that 101 appears on the F2F1F0 control wires because 101 is the code for binary addition.
Next let's look at the conditional jumps, those whose RTL use if statements such as JZ:
if Z=1 then PC <- x
The Z wire is ANDed with the instruction wire for JZ coming from the operation decoder. Only if both the JZ wire and Z are high will PC-LD and PC-MUX be set to 1, thereby allowing IR's 12 bits to be copied into PC. Since PC is 16 bits long, the upper 4 flip-flops are always loaded from a wire that always has logic 0. PC could have been made to be only 12 bits wide, but sometimes it is simpler to reuse basic components and just rig them up to act special in special cases, such as the PC.
Finally, the notations ... <- m[x] and m[x] <- ... require more explanation. The output of memory is never copied directly into any register except MBR, so the load instructions that copy m[x] into A are really more complex in that they first cause the value to go from memory to the MBR, and then from the MBR to A. The reverse happens when A's value is stored into memory.
In all of these cases dealing with memory, the first step is to load the MAR with x or S and set the two memory control wires MA and WR. If the operation is write, MBR is also loaded at the outset for either A or IR. After a delay, the output of memory is copied into the MBR, which is then copied into its final destination. These operations have to be carefully timed because the memory must be given enough time to retrieve or store values. Also, when m[x] is used as an operand in an arithmetic or logical operation, the value is really coming from the TMP register, which received a copy of the MBR after the memory read. Another possibility for the circuit designers would have been to let MBR act as the other input to the ALU, thereby avoiding a TMP register altogether.

Section 8.4
An instruction in micro-detail

Now we are in a position to see the actual sequence of micro-events during a CSC-1 machine instruction. These micro-events are nothing more than control wires getting turned on and off by the hardware DFA, yet they direct the flow of data and the selection of processes to be done, thereby implementing what seems to us to be a single but sometimes complex instruction. First, we will examine ADD.
The ADD instruction has the following operand structure:
ADD x
or in the machine language of 1's of 0's:
0011 xxxxxxxxxxxx
The x value is treated as the address of the second operand of the addition operation, which will come from memory. If x=000000001101, which is 13 in binary, then memory word 13 (all 16 bits) will be retrieved from memory and put into the TMP before the adder is allowed to get started. Since no shifting is desired, the shifter is told to pass through the output of the adder unchanged, which is then redirected back into the A register. This is expressed much more succinctly in the RTL for ADD:
A <- A + m[x]

Following is the sequence of control point assignments that accomplishes this. Each line of the following represents a distinct time step, and all the control points on the same line are turned on (or off) simultaneously. In those cases where a group of wires have the same names, such as the MAR-MUX wires (both 1 and 0), their individual names have been elided so as to save space. Thus, MAR-MUX=10 is shorthand for MAR-MUX1=1 and MAR-MUX0=0. Assume that all control wires contain 0 before step 1.
 1. MAR-MUX=01
 2. MAR-LD=1
 3. MAR-LD=0; MA=1; WR=0; MBR-MUX=10
 4. MBR-LD=1
 5. MBR-LD=0; MA=0; PC-INCR=1; IR-LD=1
 6. IR-LD=0; PC-LD=1
 7. PC-INCR=0; PC-LD=0
 8. MAR-MUX=00
 9. MAR-LD=1
 10. MAR-LD=0; MA=1; WR=0; MBR-MUX=10
 11. MBR-LD=1
 12. MBR-LD=0; MA=0
 13. TMP-LD=1
 14. TMP-LD=0; F=101; SH=00
 15. A-MUX=00
 16. A-LD=1
 17. A-LD=0
Here is how the four stages of the instruction cycle line up against the above sequence:
· Lines 1 through 7 implement the instruction fetch stage.
· The instruction decode stage is implicitly done after line 6.
· Lines 8 through 13 implement the operand fetch stage.
· Line 14 implements the execute stage, telling the adder which of its several functions to perform.
· Some architectures make explicit a storeback stage where the result of the computation is put into its destination. In the CSC-1, the values often go back into the A register, so lines 15 through 17 could be thought of as the storeback stage.
Now we will go through the 17-line sequence in painful detail. Take a deep breath before continuing to read. It might be handy to have the block diagram of the CSC-1 (Fig. 8.1.1) in front of you so you can identify the components easily as we progress. (This material also closely follows the detailed look at the ADD instruction in Section 7.6.)

	In steps 1-5, the computer is fetching the next instruction from memory and putting it into the MBR. It does this by copying the address from the PC register into the MAR register by setting the appropriate code for MAR-MUX (012=1) which routes the lower 12 bits of PC into the MAR.
These actions are accomplished in minute steps as follows. Step 1 puts 1 onto the MAR-MUX so that output of the PC register can be copied into the MAR. This happens when MAR-LD flips from 0 to 1 back to 0, in steps 2 and 3. Then the memory is "turned on" by setting MA=1, while also giving the "read" command to memory by setting WR=0. The computer sets up the MBR's MUX to accept the output of memory by selecting port 2 (102=2) of MBR-MUX in step 3. This can happen at the same time as the other settings. Indeed, step 3 may take some time due to the fact that memory accesses might be slow. If the memory is too slow, then time step 3 is repeated, keeping all the wires with the same value.
When the new word is ready from the memory, it is latched into the MBR register by setting MBR-LD to 1, and then back to 0, as shown in step 4 and 5. In step 5 memory is "turned off" by setting MA back to 0.
Also in step 5, we add +1 to the binary number in the PC register by setting PC-INCR to 1. This causes the PC to point to the next memory address for its next fetch, thereby implementing sequential execution of a list of commands kept in memory. If the instruction that is yet to be executed is a jump, it will merely overwrite PC, so it doesn't hurt to add 1 to PC anyway. If that old value is completely overwritten by a jump instruction, so what.
Step 5 also begins the loading of the IR register, whose input is hooked to MBR's output. Step 6 turns off IR-LD, and also strobes PC-LD, allowing the new incremented value to be put back into the PC. The incrementer circuit of the PC register merely computes 1 plus the current value of the PC; it doesn't actually store it back into PC until the PC-LD wire goes high temporarily. Otherwise, the value of PC might be incremented several times.
Step 7 turns off PC-INCR and PC-LD, thereby ending the process of fetching the next instruction and pointing PC to the instruction after that.
Step 8 begins the operand fetch stage. First MAR-MUX is set to 0 so that the output of the IR register is copied into the MAR. Remember that the low 12 bits of the IR register is the operand address. Next MAR-LD is strobed to latch this new value in steps 9 and 10. Memory is turned back on in Step 10 and the MBR is set to accept the memory's output, which is latched into the MBR's flip-flops by Steps 11 and 12.
Once the operand is in the MBR, it must be copied into the TMP register, which is done by strobing TMP-LD in steps 13 and 14. TMP's input comes only from the MBR, reinforcing the notion that TMP might be omitted entirely and the MBR could be used as the second operand. If this were so, Step 13 could be omitted entirely and F=101 and SH=00 could be added to Step 12 thereby saving some time. Nevertheless, we will stay with the diagram as we have it.
In Step 14, the ALU operation is set to add (F=101 does this) and the shifter is told to pass through the result of the ALU unchanged (SH=00 does this).
Step 15 tells the ALU that its next input will be from port 0 of the AMUX, which is connected to the output of the shifter. Steps 16 and 17 strobe this new value back into the A register, thereby effecting the storeback stage.

How did the computer know that this sequence of 17 steps was what it was supposed to do? Every CSC-1 instruction has at least the instruction fetch stage, so steps 1-7 are fixed. But once the instruction has been decoded (after Step 6), the hardware DFA ANDs the instruction wire for ADD with the other time steps and sets the control points appropriately. In short, the fact that the instruction in the IR register as of the end of Step 5 is an ADD instruction determines that Steps 8 through 17 will be done.
There is a lot of parallelism at the lowest hardware level and signals can flow between different components at the same time as long as they do not interfere with each other. Thus, we could conflate the above 17 steps down to the following 13 for the ADD instruction if we utilized more parallelism. The one tricky thing is that the MAR-MUX is set up to receive the output of PC at the end of the previous instruction, thus, when the computer first fires up, we must assume that MAR-MUX=01 before step 1.
 1. MAR-LD=1
 2. MAR-LD=0; MA=1; WR=0; MBR-MUX=10
 3. MBR-LD=1
 4. MBR-LD=0; MA=0; PC-INCR=1; IR-LD=1
 5. IR-LD=0; PC-LD=1
 6. PC-INCR=0; PC-LD=0; MAR-MUX=00
 7. MAR-LD=1
 8. MAR-LD=0; MA=1; WR=0; MBR-MUX=10
 9. MBR-LD=1
 10. MBR-LD=0; MA=0; TMP-LD=1
 11. TMP-LD=0; F=101; SH=00; A-MUX=00
 12. A-LD=1
 13. A-LD=0; MAR-MUX=01
Again, if the TMP register were deleted and the MBR used for the second operand, another step could be saved in the following way:
 9. MBR-LD=1
 10. MBR-LD=0; MA=0; F=101; SH=00; A-MUX=00
 11. A-LD=1
 12. A-LD=0; MAR-MUX=01
It is precisely this kind of intricate thinking that chip designers go through when they strive to build the fastest possible computer.

Section 8.5
How Indirect Addressing Works

Data is fetched from memory using the load instruction (LOD in the CSC-1). Conversely data is stored to memory using the store instruction (STD in the CSC-1). However, a computer that provides only these two instructions will be very limited and may not be able to implement any high level language.
In order to provide flexibility, indirect addressing allows the address to be created at run-time, often by adding two other numbers together. LOD and STD specify the address in the instruction itself, so the address can't be changed (unless the instruction is changed, which is possible but highly frowned on these days).
Most high level language data structures, such as arrays, records (structs), objects, linked lists, etc., require indirect addressing because the addresses cannot be known ahead of time and stuck into a LOD instruction.
For example, consider an array of 100 integers, named stuff.
int stuff[100];
Let's say we wanted to add the 1st and 2nd element. We would use the indexes 0 and 1 as follows:
sum = stuff[0] + stuff[1];
However, if you needed to get at all the elements, or if you wanted to access a random element, you would need an index variable, such as:
n = stuff[i];
The value in variable i can be changed as the program progresses. This number isn't known at assembly time, but must be computed at run-time as needed. This is precisely why arrays need indirect addressing. Only scalars can be addressed using LOD and STD because their addresses are known at compile-time.

Now let's look at indirect addressing in the CSC-1 in some detail. The two instructions that implement indirect addressing are
LDS -- load from memory using the Secondary register's
 contents as the address; put value into A

STS -- store A's value into memory using the Secondary
 register's contents as the address
This section will lead you through the details of how the LDS and STS instructions work, using the CSC-1 block diagram repeatedly, as was done in Section 7.6.

First, let us examine LDS. Below is the block diagram of the CSC-1 with a small program in memory and some data:
[image: https://brahe.canisius.edu/~meyer/253/BOOK/ch8/INSERTs/GIFs/Ins8-1.gif]

The "LOD 1000" instruction puts the number 2500 into the accumulator. There is nothing intrinsic about 2500 that says it is an address; it could be either a pure integer used for some calculation, or an address. The CSC-1 computer does not know the difference.
[image: https://brahe.canisius.edu/~meyer/253/BOOK/ch8/INSERTs/GIFs/Ins8-2.gif]
Next the A2S instruction fires up and copies the 2500 value from the A to the S register:
[image: https://brahe.canisius.edu/~meyer/253/BOOK/ch8/INSERTs/GIFs/Ins8-3.gif]

Now the fun begins. The next instruction is "LDS". This instruction first copies the contents of S into the MAR and initiates a memory read. Since 2500 is in the MAR, it is as if the CSC-1 computer had executed a "LOD 2500" instruction:
[image: https://brahe.canisius.edu/~meyer/253/BOOK/ch8/INSERTs/GIFs/Ins8-4.gif]
This copies the value at location 2500, which is 18, into the MBR:
[image: https://brahe.canisius.edu/~meyer/253/BOOK/ch8/INSERTs/GIFs/Ins8-5.gif]

which is then copied into the A register to complete the instruction:
[image: https://brahe.canisius.edu/~meyer/253/BOOK/ch8/INSERTs/GIFs/Ins8-6.gif]
It is very important to realize that what has just occurred, the three instructions shown above, is equivalent to a single "LOD 2500." However, the "LOD 2500" instruction is fixed and cannot load from 2501, or 2502, as would be needed if this program were working through an array. The 3 instruction program that uses LDS could work through an array by changing the value at location 1000, to be 2501, then 2502, and so forth. We say that location 1000 is a pointer variable.
Some very old computers actually did change their load instructions. In this example, it would be as if the program went back and rewrote the lower 12 bits of the "LOD 2500" instruction so that it said "LOD 2501", then "LOD 2502," and so forth. In this way they were able to process an array. However, the program was altered permanently and could not be reused without changing the LOD instruction back to its original value, something that was too easy to forget to do! Hence, self-modifying programs quickly fell out of favor.

Let us now examine the converse, storing indirectly. Below is the set-up we will use. Notice that the number 192 is in A. This is just an integer, just a piece of data. The next instruction to be executed is STS. Location 1000, our pointer variable, contains 2500:
[image: https://brahe.canisius.edu/~meyer/253/BOOK/ch8/INSERTs/GIFs/Ins8-7.gif]

STS copies the S register into the MAR and also copies the value of the A register into the MBR, then initiating a memory write. When it is done, we see 192 in location 2500:
[image: https://brahe.canisius.edu/~meyer/253/BOOK/ch8/INSERTs/GIFs/Ins8-8.gif]
Finally, let us look at how the elements of an array would be summed up, without looking at the CSC-1 assembler program that does it. This will be shown in Chapter 9.
The picture below shows a 5-element array of small integers, in locations 2500 through 2504. A pointer variable is in location 1000, and it currently points to the first element of the array by having 2500 in it. A sum variable in location 1500 currently contains 0. When we are done, it will contain 8+2+1+4+6, or 21, which is the sum of elements of this array.
[image: https://brahe.canisius.edu/~meyer/253/BOOK/ch8/INSERTs/GIFs/Ins8-9.gif]
Not shown are two more variables. One would contain 5, since there are 5 elements in this array. Another would start out with 0, and would advance to 1, then 2, and so forth, up to 5. This variable is a counter and merely keeps track of how many numbers we have added up so that we don't go beyond the end of the array.
After 8 is added into the sum, the pointer is advanced by 1 so that it points to the next element of the array:
[image: https://brahe.canisius.edu/~meyer/253/BOOK/ch8/INSERTs/GIFs/Ins8-10.gif]
After 2 has been added to the sum, the same thing occurs:
[image: https://brahe.canisius.edu/~meyer/253/BOOK/ch8/INSERTs/GIFs/Ins8-11.gif]
This keeps up until all 5 numbers have been added. The pointer will have 2505, which is not a legal member of this array, but the counter variable (not shown) will prevent the program from continuing. Below is the final picture:
[image: https://brahe.canisius.edu/~meyer/253/BOOK/ch8/INSERTs/GIFs/Ins8-12.gif]
Arrays are not special. They are merely sections of memory that are treated by programmers as if they formed one entity. Computers like the CSC-1 do not even "know" that there is such a thing as an array! All that the primitive computer knows is that the machine language program forces it to access memory elements in this order. If a buggy program causes the program to go through its loop once too many times, the incorrect sum will result because a value beyond the end of the array will be added in. Worse, a program that changes elements of an array by rewriting them will clobber data that exists in memory locations beyond the "end" (highest address) of the array. These kinds of bugs are way too common and are the cause of lots of operating systems bugs and crashes.
What happens if the computer tries to access a memory address beyond the actual memory of the machine? A special kind of hardware error results that must be handled gracefully by the software without crashing the system, though the offending program must be squished and killed. In the CSC-1, it is impossible to ask to read or write a memory location beyond the beginning or end of memory, since there are 4096 words of memory, whose addresses go from 0 to 4095. The MAR is exactly 12 bits long, so the legal bit patterns are
000000000000 (0)
000000000001 (1)
 ...
111111111111 (4095)
In the CRC-1 computer, it is impossible to cause this kind of memory fault. Some UNIX systems call it a bus error, because an illegal address went out over the memory bus.
In many computers, the MAR is often longer than physical memory. Many computers have an MAR of 32 bits, which allows up to 4 gigabytes to be addressed. But few computers have 4 gigabytes of RAM, even today with continually falling memory prices. If a computer with 32-bit addresses has only 64 megabytes of RAM, then it is definitely possible for the MAR to get a number larger than 67,108,864 (64M), so a memory fault could occur and must be handled.

Section 8.6
Indirect addressing in action

Having seen in detail how the LDS and STS instructions implement indirect address, let us now briefly look at how these instructions can implement a high level language data structure, such as an array.
Imagine there is an array of 10 integers, called stuff. It is placed as location 1000 in memory when the program starts. Later the following C statement is executed:
stuff[i] = j;
where i and j are int variables.
Here's a picture of array stuff in memory:
[image: https://brahe.canisius.edu/~meyer/253/BOOK/ch8/GIFs/Fig8_6_1.gif]
Fig. 8.6.1: Array stuff in memory
[bookmark: #Fig8_6_1]Since the value of i is not known at compile time, it is impossible to create an STD instruction to copy j's value into stuff[i]. Instead, the address of stuff[i] must be calculated by adding the base address of array stuff, 1000, to the value of i. This type of activity is called address arithmetic.
The CSC-1 computer stores one integer in one word of memory. Many current machines which are byte-addressable use at least 4 words to store one integer, so the value of i would have to be multiplied by 4 to get the address of the right integer on these machines. Multiplication by 4 can be done efficiently by left shifting the value of i two bits.
Here is a segment of CSC-1 code to implement stuff[i]=j. Assume that variable i is stored at address 2000 and variable j is stored at address 2500.
LDI 1000
ADD 2000
A2S
LOD 2500
STS
The first line above puts the address of the beginning of the array into A, &stuff[0] in C notation. ADD 2000 then adds the value currently stored in i. Now A has the address of the desired word but since A will hold j's value, this address is shuffled over to the S register by the A2S instruction. Next, j's value can be loaded into the A register by LOD 2500, and finally the STS instruction stores this value into the correct memory location given by the contents of S.
Addresses for memory reads (and writes) can only come from the PC register (when a new instruction is being fetched), or the IR register (when the operand's address is hard-coded into the instruction) or from the S register (when the address is computed at run-time.) Only the A register can get the results of an arithmetic calculation, so there must be communication between the A and S registers.
We might think we can shrink our machine a bit by allowing the A register to directly feed into the MAR, thereby doing away with the need for a separate S register. That would work for LDS, where the A register will get a new value anyway. But it would fail for STS, because the address must be available at the same time as the new value to be stored into memory. The PC and IR registers must not be tampered with, so the TMP or MBR registers are the only alternatives. For reasons of simplicity, the CSC-1 chooses not to use either of these, but to have its own separate address register instead, which it calls S. Other computers may do things differently.
Here is the control point sequence for STS, using the "long version" instead of the compressed variants.
 1. MAR-MUX=01
 2. MAR-LD=1
 3. MAR-LD=0; MA=1; WR=0; MBR-MUX=10
 4. MBR-LD=1
 5. MBR-LD=0; MA=0; PC-INCR=1; IR-LD=1
 6. IR-LD=0; PC-LD=1
 7. PC-INCR=0; PC-LD=0 (SAME)
 --
 8. MAR-MUX=10; MBR-MUX=01 (NEW)
 9. MAR-LD=1, MBR-LD=1
 10. MAR-LD=0; MBR-LD=0; MA=1; WR=1
 11. MA=0; WR=0
This instruction is shorter than ADD since there is no operand fetch stage. Only the lines after the dashed line are different from the ADD instruction; the first seven steps are identical, since they are the instruction fetch stage.
Since STS assumes that S already has the correct address and A already has the correct value to store, it copies these values into the MAR and the MBR respectively in steps 8, 9 and 10, and then starts up the memory in 10. Step 11 merely turns off the memory so that any further changes will not affect it.

Section 8.7
An alternate organization

The CSC-1 computer suffers from a persistent problem in Computer Science -- it works well for what it does but it doesn't scale up. That is, when it comes time to expand it (notice the word when instead of if), the underlying structure proves too fragile to support changes gracefully.
The CSC-1 has a few registers that are connected in idiosyncratic ways which means that these ways of connection are suitable to the CSC-1's current instruction set but not to any other. If we need to add more instructions, such as multiplication or division, we may need to add more registers and more special pathways. Eventually the complexity of the design will become overwhelming and the designers will be forced to seek a simpler, more regular organization that allows expansion.

Fig. 8.7.1 shows a new design of registers and their interconnections that supports expansion. There are eight registers which are joined to three groups of wires, called buses. These buses funnel the data into the ALU for processing and collect the result for storing back into one of the registers. This data pathway from registers through the ALU/shifter and back to the registers is called the main data path and all instructions flow through it. For the sake of convenience in the discussion, we will dub this the CSC-2 computer.
[image: https://brahe.canisius.edu/~meyer/253/BOOK/ch8/GIFs/Fig8_7_1.gif]
Fig. 8.7.1: Alternative data path of the CSC-2
In this setup, any register can be either of the ALU's two inputs, so address arithmetic can be done directly on the contents of the S register. One "register" is hard-wired to always contain the bit pattern for +1. There are no real flip-flops for this pseudo-register: connections to constant 1 and constant 0 provide the needed bit pattern and it is impossible to store anything back into it. Some designs also have a hard-wired "register" that stores 0, and perhaps another that stores 111....1.
The CSC-2 has eight registers, not 6 or 14, because it is convenient to have the number of registers be a multiple of two. Other designs may have 16, 32 or many hundreds.
The heavy lines coming out of and going into the registers represent 16 data wires. These are the buses. Multiplexors are used to connect the registers to the buses.
Fig. 8.7.2 shows a simplified version of this register/bus configuration. Four 3-bit registers are connected to two common buses. One bus is called the A bus and receives the output of one register. Another is the B bus while the C bus, is used to write a new value into one of the registers.
[bookmark: #Fig8_7_1][image: https://brahe.canisius.edu/~meyer/253/BOOK/ch8/GIFs/Fig8_7_2.gif]
Fig. 8.7.2: Four 3-bit registers connected to two common buses
[bookmark: #Fig8_7_2]Tri-state buffers are used to electrically connect or disconnect the output wires from the registers to the wires of the A bus. The value on the decoder "decides" which register puts its value onto the bus, thereby assigning addresses to each register. In Fig. 8.7.2, one of the registers is 00, another is 01, another is 10 and the last is 11.
The C bus feeds into a set of registers so the wires of this bus are all connected to the data inputs of the flip-flops. The individual load (LD) wires tell which register gets the value. Since all of the registers are connected to the same input wires, it is possible to assign the value on the bus to more than one register simultaneously by setting the LD of two or more registers to 1. However, a more common scheme is to use a decoder for the C bus in order to specify the destination as a 2 bit number, as shown in Fig. 8.7.2.
Note two other features of the CSC-2 computer, namely the two inputs into the MBR which are selected by a special 2x1 mux, and the result register that takes the output of the shifter. This is necessary to stabilize the output of the adder/shifter and to isolate the old values of the registers from the new value. For instance, suppose that the CSC-2 controller tells this circuit to do S <- S + 1. If there were no isolation between the current value of S, which will be on the A bus, and the new value, which is the output of the adder/shifter on the C bus, then it's possible that the bits of S could get scrambled, even if the new value of S is allowed to change only when the LD wire for S goes high.
The MBR gets input from both the memory and from the main data path so it needs its own multiplexor to allow the controller to select which source loads the MBR.

Section 8.8
Control Points for the CSC-2

Controlling a computer like the CSC-2 is conceptually the same as the CSC-1 with the addition of needing to specify a 3-bit A address, a 3-bit B address and a 3-bit C address at all times. Since there are 8 registers, we need log28=3 bits in the addresses. In some cases, we may not want to store back a value into any register, such as when we store the value in the MBR into memory. In these cases, the scratch register TMP may be specified, or the pseudo-register +1, since it cannot be modified.
Let's go through ADD and STS using the CSC-2 configuration.
First, the instruction fetch stage will be similar for all CSC-2 instructions. We need to move the PC into the MAR and then request a memory read. This is done by setting the A decoder to 2, since PC is register number 2. The B decoder can be set to anything since the ALU function we will select is identity A, which copies only the A output to the shifter. The shifter is told to do nothing and the register is loaded. The C decoder is set to 6, which is the number of the MAR. Then MA is set to 1 and WR to 0 and the hardware waits for memory to fetch the value and copy it into the MBR. The MBR's mux is set to 1 in order to select the value coming from memory instead of the C bus.
Once the MBR has the instruction from memory, it must be copied into the IR register. This is done by setting A to 7, F to identity A, and C to 3. MA must be set to 0 to "turn off" the memory. Why is it necessary to actually have a separate IR register, you might ask why not just use the value in the MBR? Remember that the instruction must be decoded so that a specific instruction wire will get set to 1 in order to direct the rest of the control operations. Since the MBR will later be used to fetch the operand and store the result, that specific instruction wire must not change during these micro-operations. Hence, there needs to be a stable and safe place for the instruction to reside.
Next PC must be incremented. It would be possible to make PC be a "super register," one that has its own increment wire. But a more uniform, albeit slower, approach would be to add the +1 register to PC and store the value back into PC. This requires inputting 2 to the A decoder, 1 to the B decoder, selecting F=add, setting result-LD to 1 and then, after a suitable delay, selecting PC as the destination by putting 2 on the C decoder inputs.
Finally, we are ready to add. Recall that ADD is described by the RTL expression
A <- A + m[X]
The operand fetch stage is next. In the CSC-1, the operand value retrieved from memory was placed in the TMP register since that was the only other input to the ALU. But in the CSC-2, any two registers can be inputs to the ALU, including the MBR. Hence, once the value is fetched (by copying IR to MAR, setting MA=1, WR=0 and selecting the MBR-mux to get the value out of memory), we can directly use that value from the MBR, adding it to A and storing the result back into A. The TMP register is therefore freed for other tasks. Some operations like multiplication and division require several extra registers.
We call one complete movement of data from the registers, through the ALU and shifter, and back into one of the registers, one cycle of the main data path. The "machine instructions" of the CSC-1 would typically require several main data path cycles if the CSC-2 setup is used. Here is what would be needed for the ADD instruction:
MAR <- PC instruction fetch
PC <- PC + 1 advancing program counter
IR <- MBR saving the opcode
MAR <- IR operand fetch
A <- A + MBR main addition step, storeback
No fewer than 5 cycles are needed, which argues that the main data path be as short as possible and the adder as fast as possible. If the PC gets back its dedicated INCR wire, one complete cycle could be saved, making ADD faster.
Here's what the control point settings would look like for the CSC-2 doing an ADD instruction, based on the above five main data path cycles:
MAR <- PC A=2 F=0 SH=0 MA=1 WR=0 ; instruction fetch
 RESULT-LD=1
 C=6
PC <- PC + 1 A=2 B=1 F=5 SH=0 MA=0 ; increment PC
 RESULT-LD=1
 C=2
IR <- MBR A=7 F=0 SH=0 ; begin decoding
 RESULT-LD=1
 C=3
MAR <- IR A=3 F=0 SH=0 MA=1 WR=0 ; operand fetch
 RESULT-LD=1
 C=6
A <- A + MBR A=4 B=7 F=5 SH=0 MA=0 ; execute & storeback
 RESULT-LD=1
 C=4
Each of the values after A=, B= and C= encode a 3-bit binary number which is inputted to the appropriate 3x8 decoder that selects which register will be gated onto which bus. If A=2, then the value 0010 or 2 will be inputted to the A decoder, causing the contents of register 2, which is the PC register, to be copied onto the A bus. The F= value denotes the ALU function, according to the table on page 3, only expressed in decimal instead of binary. Thus F=5 means the F wires contain 101, which is an addition.
RISC computers try to make each cycle of the main data path be a machine instruction, so they usually disallow operand fetches from memory, instead using more registers. It is not uncommon for a RISC machine to have hundreds of registers.

1

image4.gif

image5.gif

image6.gif

image7.gif

image8.gif

image9.gif

image10.gif

image11.gif

image12.gif

image13.gif

image14.gif

image15.gif

image16.gif

image1.gif

image2.gif

image3.gif

