Section 10.1
RISC vrs. CISC

The crude and simple machine that we dubbed the CSC-1 is a complete computer though it is representative of computers from the late 1940s or early 1950s. By the early 1960s, computers had evolved to the point where they needed more power and complexity to handle modern programming languages, database systems and operating systems.
To accomodate the requests of compiler designers for advanced instruction sets, hardware designers began to add lots of new instructions and to make old ones more complicated. This led to what we now call CISC, Complex Instruction Set Computers. These computers or chips have hundreds of different instructions, a wide variety of data types and operand addressing modes.
RISC appeared as an alternative design method beginning in 1975 with an experimental IBM minicomputer. Standing for Reduced Instruction Set Computers, RISC is exemplified by fewer instructions and a simpler way to move data between main memory and the processor. Hardware designers discovered, much to their surprise, that RISC computers were often much faster than their CISC cousins, even though a RISC program executed more instructions to do the same task. But each instruction was quicker and the overall chip was smaller, leading to speed improvements.
The hegemony of RISC is still growing. The PowerPC chip, which IBM uses for many of its mid-level computers and which Apple uses to power the modern Macintoshes and the new iMac, is a RISC chip, as is the SPARC that SUN Microsystems uses and the MIPS chip that powers Silicon Graphics' computers. The main holdout in the CISC world now is the Intel x86 and Pentium line of chips, though new RISC-like features and instructions have been added to the Pentium Pro and its successors. Currently, Intel and Hewlett Packard are exploring a new 64-bit RISC design called the Merced, or IA-64.


Here's a table showing in which camp some of the major computers and chips lie:
	CISC
	RISC

	IBM 360
	CDC Cyber

	VAX 11
	IBM PC/RT

	Intel x86 series
	PowerPC

	Intel Pentium series
	SPARC

	Motorola 68000 series
	MIPS


The ascendancy of RISC is good news for assembler programs (what few are left!) since it greatly simplifies the assembly language in which these low level programs are written. Since RISC is both the current trend and simpler, we will spend most of our time in this course learning about RISC. Chapter 11, which is optional, explains some of the operand addressing modes which you might encounter in the CISC world.
There is a common term for the structure and design of a computer's instruction set, namely the ISA or Instruction Set Architecture. This refers to the set of instructions, the kinds of data they work on, how many operands each instruction has, whether there is flexibility in the instructions, and so on. In some ways, the ISA is the most visible and important part of a computer or chip because it is the interface between the gates and registers and the programmer and compiler.
 


Section 10.2
Registers and Immediate Data

Data operated on by machine language instructions must be in one of three places in the computer:
1. a register
2. the instruction itself
3. main memory
When data is in the instruction itself, we usually call it immediate data because it is immediately available. Actually such data is in main memory until the instruction is fetched, at which point it is in a register (namely the IR register).
Machine languages use various ways to specify these three operand addressing modes. We will present a generic way herein that is similar to modern RISC computers.
Register mode is specified by using a register number in conjunction with a special mark or designator, often the letter 'R' or a percent sign or a dollar sign. Here's an example of an add instruction that takes data out of two registers and puts it in a third:
ADD R5, R6, R7
Just looking at this, you can't tell which are the source register and which is the destination consulting the manuals. The VAX put the destination last, while the IBM 360 put the destination first.
Another way of showing such instructions is to use symbols such as + and =, as the CDC Cybers did:
R7 = R5 + R6
There is no good reason why this style should not be used, except for the possible fact that the actual instruction name, ADD, is not visible at the very front of the instruction. Historically, assembler languages place the operation at the front followed by a list of operands. This mirrors the way that many machine languages place the actual opcode, near or at the beginning of the instruction.


Immediate mode is designated by putting the data in place of an operand, and signifying it with some special mark like the hash sign or a percent sign. For example:
ADD  R7, #2, R6
Most immediate data consists of small integers, usually less than the maximum allowable since there are not enough bits in the instruction to hold a 32-bit or a 64-bit integer. A few machines, like the VAX 11/780, permitted very small floating point numbers, such as #8.3.
Obviously, immediate data cannot occur in the destination slot of an instruction since a constant should not be changed. The real reason why it is disallowed is subtler; the immediate data is in actual main memory but it is embedded in the instruction and virtually impossible to retrieve later. Therefore immediate data is never allowed in the destination slot. The following instruction
ADD  #1, #2, R5
gives a strong clue that the destination register is the last one in the list.
There is a trade-off between speed and expense when it comes to the number of registers in a CPU. Registers are faster and using them for temporary storage would speed up almost every program. However, they are expensive and take up precious chip real estate. Many older computers had only a few, such as 16 in the IBM 360 and the VAX, 8 in the Cyber, and 8 in the Intel 8086.
As RISC chips made more registers possible, as many as 300 registers in some CPUs, a new problem arose, which is how to address those registers. Registers must be identified by a numerical address inside an instruction. Thus, a 3-address computer with 16 registers would need 3×4 or 12 bits to specify all the operands, since log216 = 4. However, 300 registers would require no fewer than 9 bits, hence each instruction would need 3×9 or 27 bits just for the operands, and instantly programs are almost twice as long as before, in terms of bits.
Some RISC computers use a clever way of reducing the bit size of instructions while still permitting hundreds of registers to exist. Only a subset of all registers is visible at any given time, usually 32. This means the operand size goes down to 5, since log232 = 5. Of course, if a register outside this current set of 32 is needed, a special instruction must be executed to reset a pointer within the register file so that the desired block of 32 registers is visible. This method is similar to base+offset memory addressing, which is discussed next.
Section 10.3
Base-offset addressing

When main memory needs to be accessed (which is often), we need to tell the computer what the address is. But main memory addresses are often long. Many computers today have 32-bit addresses and a few are harbingers of the 64-bit world to come.
The simplest way to specify a memory address is to put the entire memory address into an instruction where it is needed. For instance:
ADD  2311170,883293,1676519
As you can see the addresses are sometimes large.
16 megabytes requires a 24-bit address (since log216,777,216=24). If the instructions had three operands, as in the example above, and each operand could be either a register or a memory operand, there would need to be at least 24×3=72 bits in an instruction. Actually there would need to be more since there would have to be at least one bit per operand to tell whether the number represented a register or a memory cell. Added to these bits is the opcode, and soon an instruction requires 80 bits, or 8 full bytes!
Therefore, hardware designers had to come up with ingenious ways around this problem of instructions and addresses being too long, especially back when memory was expensive.
One ingenious solution was to not specify three distinct operand addresses each time, but to leave one or two of them implicit. This is how the CSC-1 works, since it always uses the A register as both one of the operand and the result, requiring only one operand to be explcitly mentioned in ADD or SUB instructions.


The other solution is base/offset addressing. Here is how it works. A large chunk of the address is kept in a register and a smaller chunk of it is specified in the instruction as the operand. When the operand fetch stage of the instruction cycle occurs, the value in the register is combined with the smaller chunk in the instruction to come up with a full memory address. Fig. 10.3.1 shows this schematically.
[image: https://brahe.canisius.edu/~meyer/253/BOOK/ch10/GIFs/Fig10_3_1.gif]
Fig. 10.3.1: Combining two bit patterns to give one complete address
The value in the register is the base address and the value in the instruction is the offset.
The reason why this works well is because of the principle of data locality which says that most of the data that a program needs will come from the same general region of memory, until the program switches to a new section or it ends. The base address need not be changed very often if this is true, since the computer can use the same base address value for a long time.
Engineering takes up where theory leaves off and determines just how often the base address will have to be changed, thereby determining the optimal split between the base address and the offset. If the split is 24,8 for a 32-bit address, only 28 or 256 different memory words can be accessed for a given 24-bit base address. This might be too small, so a larger offset would be needed, say 16 bits, which is 65536.


The most common way of combining the base and the offset is to use addition, since that permits the greatest flexibility in choice of base addresses. Fig. 10.3.2 shows how this looks both schematically and in a real example:
[bookmark: #Fig10_3_1][image: https://brahe.canisius.edu/~meyer/253/BOOK/ch10/GIFs/Fig10_3_2.gif]
Fig. 10.3.2: Adding the base address and offset to get the complete address
Adding a base address plus a small offset provides the most flexibility because the base addresses no longer have to be at chunk boundaries which is the case when we simply splice the base and offset together as shown in Fig. 10.3.1. A chunk is a region of consecutive memory words. Its size is determined by the number of bits in the offset. If offsets are 8 bits, then each chunk is 256 words long. The first chunk would begin at 0, the second at 256, the third at 512, the fourth at 768 (512+256), the fifth at 1024, and so on.
With addition, base addresses can start anywhere in memory. In fact, regions of memory that are covered by a particular base address can overlap if their base addresses are closer than the offset's number.
For example, suppose that offsets are 16 bits. Now the base address 0 can cover addresses 0 through 65535. But to access address 65536, the base address would have to be greater than 0. It might be 65536, in which case the offset would be 0. But it might also be 1, in which case an offset of 65535 will work. Thus, base address 1 covers addresses 1 through 65536. Of course it overlaps most of the same area as base address 0 but that doesn't matter to the hardware.


Fig. 10.3.3 shows this overlap:
[bookmark: #Fig10_3_2][image: https://brahe.canisius.edu/~meyer/253/BOOK/ch10/GIFs/Fig10_3_3.gif]
Fig. 10.3.3: Overlap between base address 0 and base address 1
Let's review. When most data comes from the same small region of memory, only part of the address needs to be specified, since the rest of it stays constant. The small part is called the offset and is encoded in each instruction. The larger part is called the base address and typically resides in a register. It is set only once by one instruction and left unchanged while the machine language program stays operating in that same region of memory. If it begins processing outside that region, a new base address must be set.
Since there are a number of registers, it is possible to use several of them for several different base addresses, making it easy to work on several different chunks of memory words at the same time. These chunks can be as widely separated as possible since the base addresses do not need to be close to each other.


An example of this is shown in Fig. 10.3.4 where a chunk of memory words is being copied from one section of memory into another, widely separated in terms of address space. The symbolic pseudo-assembler code shows a memory word being loaded into R1 for temporary storage and then put into memory. The address of the source memory word is R7+i where i is like an index variable in C, and the address of the destination memory word is R8+i.
[bookmark: #Fig10_3_3][image: https://brahe.canisius.edu/~meyer/253/BOOK/ch10/GIFs/Fig10_3_4.gif]
Fig. 10.3.4: Copying one chunk of memory words to a distant place
[bookmark: #Fig10_3_4] 


Section 10.4
Addressing main memory

Base+offset addressing is used because it saves on space in the instructions and because it permits programs to be moved around in memory without having to rewrite all the memory addresses. This is called relocation and is studied in Chapter 12.
When the operand is data in a word of memory, its address in an assembly instruction is usually specified as a register that contains the base address and an offset. In many computers, the offset is fixed at run time, so the assembly instruction would use a notation like R5+187. This is interpreted as
Add 187 to the number in R5 to form the effective address (the actual address to use).
This address will either be the address of where to get some data, if this notation is in a source operand, or it will be the address of where to store the result, if the notation is in the destination slot.
Here's an example of an instruction that mixes all three addressing modes:
ADD  #5, R2, R3+100
The destination slot is the last operand in this instruction.
Sometimes the address of the data is entirely in a register and no offset needs to be added. However, the format of assembly and machine instructions requires an offset so we specify 0. In the following instruction, we are adding 1 to the memory word whose address is in R7:
ADD  R7+0,#1,R7+0
Because R7 contains an address, we also say that R7 points to a word in memory and that R7 contains a pointer.


Here is a summary of the notations common for operands:
Name    Example   the data is in...   source/destination   what value?
--------------------------------------------------------------------------
Register  R7      a register        may be either      the contents of R7

Immediate #5      the instruction   may only be source the number 5

Memory    R7+150  main memory       may be either      whatever is in main
                                                       memory at address X
                                                       where X is contents
                                                       of R7 added to 150

What happens when the address must be computed by more complicated means? For example, in the previous section there was a loop that copied words from one region of memory to another. The notation used there indicated that a variable was added to a register. Is there a way to do this? Can we specify that the contents of two registers get added together to form the address, instead of a register and a constant? For example:
R7+R2
Alas, most machines do not have this addressing mechanism, but not because it is impossible to implement or that it is unlikely to be used. The reason is that there are so many different addressing modes that we might like to have that the hardware designers could not accomodate them all without computers becoming too large and costly. So we must simulate this addressing mode by using two or more simpler instructions to calculate the address.
For example, to implement R7+R2, we add the contents of the two registers together and store the result into a third. Then use that register with an offset of 0.
ADD #1, R7+R2, R5      ---becomes--->       ADD  R7, R2, R3
                                            ADD  #1, R3+0, R5
In the sequence of two instruction, the first one sets up the address while the second one does the actual calculation we want, namely adding 1 to the value in a certain memory word and putting that into R5. Thus, the lack of the register+register mode slows down the computer, and uses one extra register, but if it is not used very often, this cost is acceptable. On the other hand, if this addressing technique were used frequently, it might behoove the hardware designers to add the register+register mode to the hardware.

Finally, let's investigate one other kind of "data" that commonly occurs in machine instructions, namely branch targets, which are addresses of other program instructions. These are usually shown as symbolic labels in assembler programs, as in the CSC-1 assembler. The instructions that use these are jumps and calls:
JMP   TOP
JZ    R5,ENDLOOP
CAL   SQUAREROOT
Branch targets are implemented in a variety of ways in modern computers, but many use the base+offset method to specify these addresses. When this is done, the base address is usually the beginning of the program in memory at run-time and the offset is how many bytes into the code the address occurs.
Here are the above instructions where the symbolic labels have been implemented using base+offset addressing:
JMP   R15+372                ;  JMP TOP
JZ    R5,R15+68              ;  JZ  R5,ENDLOOP
CAL   R15+1235               ;  CAL SQUAREROOT
If the program gets to be too long, the base address may have to be changed. Various microcomputers struggle with these issues, calling addresses that can be specified by a single offset near pointers while full 32-bit addresses are far pointers. We will not get all tangled up in these complications in this course.
 


Section 10.5
Number of operands

One complication is that some ISAs do not permit just any combination of the various addressing modes in an instruction. For example, you may be able to specify only one operand that names a memory address with base+offset. The VAX was unusual because you could mix and match any operand addressing style but the cost for this flexibility was a very slow computer. Most modern RISC architectures constrain the addressing modes. In fact, most of them allow only register and immediate mode in all instructions except for two special instructions that load and store from memory (see Chapter 16, section 5).
The reason for the inflexibility is to save on space and time. If any operand can use any addressing type, then some type of flag byte must accompany the operand and tell what type it is. The VAX has a mode byte that precedes every operand, telling whether it is register mode, immediate mode, base/offset mode or any of several other more complex modes. Not only do these mode bytes make the instructions longer but they take extra time to decode.
Even worse, mode bytes cause instructions to be of variable length, which makes it impossible for the hardware to predict how long the instruction is by merely looking at the opcode. Pipelines usually require that instructions be of the same length or have easily calculable lengths. If the computer has to pick apart the instruction byte by byte, the pipeline will not be very fast. (See Chapter 15 for more about pipelines.)
Most computers have a fixed number of operands for their instructions to take advantage of all the time and space savings. The number of operands is usually 0, 1, 2 or 3. A few computers, again including the VAX, sometimes have 4 or 5 operands.
The ISA of almost every computer includes instructions with differing numbers of operands. In the CSC-1, for example, some instructions have one operand while many have no operands. This is because some instructions, such as RET, do not require any addition information. But most computers have a design philosophy that is reflected in the number of operands that is most common. The CSC-1 machine has very few registers, so most of its instructions have one operand. RISC machines have hundreds of registers, so they have more operands. A few large and complex systems, especially older CISC mainframes, seem to throw in the kitchen sink, providing instructions with many different operands to please everybody. The IBM/360 comes to mind in this regard, as does the VAX 11 series.
Let us run through the four main styles of operand addressing. We have been looking at 3-address code in the previous sections where both source operands and the destination are explicitly named.
Here is an example of a 3-address instruction:
MPY  R1, #2, R6
This type of addressing is the easiest to use, but it is the costliest in terms of number of bits in each instruction. The only way this cost can be ameliorated is by having the operands be very small such as registers.
2-address code compromises between flexibility and cost and is common in older machines that have a number of general purpose registers, but not hundreds like RISC machines do. One of the operands is implicit in 2-address instructions. In most cases, the implicit operand is the destination, which doubles as one of the sources.
Here is an example of a 2-address instruction:
ADD  R6, #1
This style of operand addressing works well for those times when you want to do something to an operand and put the result back in it, as in the above add instruction, which adds 1 to the current value in R6 and stores the new value back into R6.
However, 2-address code is less than ideal when you need to deal with three different objects. Assembler programmers quickly learn a trick to get the around the clumsiness of 2-address code in these cases by putting one of the operands in the destination before you issue the operate instruction. For example to implement R6=R5+1, you would write:
MOV   R6, R5
ADD   R6, #1
The IBM 360 is predominantly a 2-address computer.
1-address code is even clumsier still. The CSC-1 computer uses 1-address codes. Both the destination and the second operand are implicit, relying upon an accumulator register to hold this silent partner. Here's an example:
ADD   XYZ
Computers with few or even just one general purpose register tend to use 1-address code since having only one register means it doesn't have to be explicitly specified; the computer "knows" which register you are using!
Here's a slice of program that would implement ABC = DEF + 1 where ABC and DEF are memory addresses:
LOD   DEF
ADD   ONE
STD   ABC
1-address programs tend to be longer than 2-address programs, and usually much longer than 3-address programs.
0-address programs might seem impossible, but "0-address" is really a misnomer. What is meant is that all register references are implicit and not given directly in the machine instruction, like 1-address code, but there are many "registers," unlike 1-address code. These "registers" are really words in a memory space called the stack. For this reason, 0-address code is often called stack code.
It is possible to make a LIFO stack (Last In First Out) in hardware though its maximum size would be fixed and probably small. Therefore, most computers reserve a chunk of main memory for the stack. A special register, called SP, or stack pointer, contains the memory address of the top of the stack.
Stack code still needs to access memory because programs need to refer to variables in memory in an arbitrary fashion, not a last-in, first-out disciplined manner. Thus, there is a PUSH instruction that copies values out of memory and put them onto the top of the stack, and a POP instruction that removes the top value from the stack and stores it into memory at a named address. The stack serves as temporary, intermediate storage, just like registers do in other computers.
Here is a chunk of code using 0-address instructions:
PUSH a
PUSH b
ADD
POP c
This implements c=a+b where c, a, and b are words in memory. The fact that the ADD instruction has no operands is where the name 0-address code comes from. All operate instructions in stack machines, such as ADD, SUB, MUL, DIV, SHL (shift left), etc. work on values in the stack and do not have explicit operands.
Section 10.6
An example of operand addressing styles

In this section, we will look at the several styles of operand addressing through a concrete example.
The following algebraic calculation and assignment to variable x is translated below into 0-, 1-, 2- and 3-address code:
[image: https://brahe.canisius.edu/~meyer/253/BOOK/ch10/INSERTs/GIFs/Ins10-1.gif]
First we make all multiplications explicit and then linearize the expression, giving:
x = a-(2*b + c*d)/(e*e)
The following four segments encode the above expression and the assignment of the result to variable x.
3-address code     2-address code     1-address code     0-address code
-------------------------------------------------------------------------
MPY r1,#2,b        LOD r1,#2          LDI 2              PUSH a
MPY r2,c,d         MPY r1,b           MPY b              PUSH #2
ADD r3,r1,r2       LOD r2,c           STD t1             PUSH b
MPY r4,e,e         MPY r2,d           LOD c              MPY
DIV r5,r3,r4       ADD r1,r2          MPY d              PUSH c
SUB x,a,r5         LOD r2,e           ADD t1             PUSH d
                   MPY r2,e           STD t1             MPY
                   DIV r1,r2          LOD e              ADD
                   LOD r2,a           MPY e              PUSH e
                   SUB r2,r1          STD t2             PUSH e
                   STO r2,x           LOD t1             MPY
                                      DIV t2             DIV
                                      STD t1             SUB
                                      LOD a              POP  x
                                      SUB t1
                                      STD x
Fig. 10.6.1: Various encodings of x = a-(2*b + c*d)/(e*e)
[bookmark: #Fig10_6_1]Here are some clarifications about this code. MPY stands for multiplication and DIV stands for division. All variables are integers, so DIV means truncated division. The pound sign (#) denotes an immediate operand.
In the 3- and 2-address code segments, registers are used to store temporary values, and they are denoted by r1, r2, etc. In the 2-address code, registers are reused to reduce the total number of registers needed. In the 1-address code, memory locations labeled t1, t2, etc. are used for temporaries. The 0-address code implicitly uses the run-time stack for temporaries, as we learned in the previous section.
In the 3-address code segment, the first operand is the result, which is backwards from the way we studied earlier. In the 2-address code, the first operand is both the first arithmetic operand as well as the result. Thus, ADD r1,r2 means r1<-r1+r2. The store instruction (STO r2,x) instruction is the only one which does not follow this model. It copies the value of r2 into the memory location designated by x.
The 1-address code uses the CSC-1 instructions and style, although the instructions MPY and DIV had to be added.

The 3-address coding style we learned about in the previous sections does not permit full 32-bit memory addresses inside instructions, but uses base+offset instead. This means we would have to replace all references to variables, such as a, b, c, d and x, with a base register plus an offset, as shown below:
MPY r1,#2,b             MPY  r1,#2,r15+897
MPY r2,c,d              MPY  r2,r15+210,r15+623
ADD r3,r1,r2            ADD  r3,r1,r2
MPY r4,e,e              MPY  r4,r15+799,r15+799
DIV r5,r3,r4            DIV  r5,r3,r4
SUB x,a,r5              SUB  r15+101,r15+37,r5
The assembler program would do this translation for us, so that we could use symbolic labels, such as a, b, c, d, and x, instead of the more cumbersome r15+897, and so forth.
One last refinement of the 3-address code can be made to bring it closer to conformity with modern RISC machines. In these machines, you cannot load from memory or store to memory in any instruction except for two special instructions, LOAD and STORE. All other operations take place in registers.


Here is how the 3-address code would be written under this restriction:
LOD r6,b
MPY r1,#2,r6
LOD r6,c
LOD r7,d
MPY r2,r6,r7
ADD r3,r1,r2
LOD r7,e
MPY r4,r7,r7
DIV r5,r3,r4
LOD r6,a
SUB r7,r6,r5
STO r7,x
This makes the 3-address code a lot longer and harder to read, but it simplifies and speeds up the hardware.
In the next section the 0-address code is discussed in more detail.
 


Section 10.7
Stack architectures

Now we must investigate the 0-address or stack code in some detail based on the algebraic assignment statement of the previous section.
The two operations, PUSH and POP, move data between the stack and other locations of memory. They both affect the stack's size. PUSH e copies the value from the memory word assigned to variable "e" onto the stack, which POP x copies the top value of the stack into the memory word assigned to variable "x."
For the two non-commutative arithmetic operations, subtraction and division, the order of operands is important. The stack machine we define in this section takes the second operand from the top word of the stack and the first operand from the word "underneath" the top. This is unimportant with commutative operations like ADD and MPY, which simply pop off the top two words, do the operation, and push the result back onto the stack. SUB and DIV also take off the top two words, but the order is important and we must push the operands on the stack in the correct order. We can encode an arithmetic expression by a series of PUSHes from left to right, rather than from right to left, because our fictitious stack machine uses the top of the stack as the second operand and the bottom as the first. Other setups are possible.
Fig. 10.7.1 shows the stack's progress as we push and pop and do arithmetic according to the 0-address program.
[image: https://brahe.canisius.edu/~meyer/253/BOOK/ch10/GIFs/Fig10_7_1.gif]
Fig. 10.7.1: Stack progress of the 0-address code of Section 10.6
[bookmark: #Fig10_7_1]The general strategy of stack code is to set up the operation by putting all the values on the stack, and then issuing the instruction. Thus, the first three PUSHes set things up for the first multiplication, 2*b. a was pushed onto the stack first simply because it appeared first in the expression. It will sit at the bottom of the stack until the very last instruction, SUB.
If you find stack code a bit hard to understand and even tougher to write, consider that the famous Hewlett-Packard company made calculators which expected the user to enter values in this style. It was called RPN, or Reverse Polish Notation. Early calculators didn't have a powerful enough microprocessor to parse arithmetic expressions that obeyed the rules of precedence, and RPN was a compromise system. Unfortunately only geeks loved it and found it easy. Maybe even they find it very easy!
 


Section 10.8
Little and big endian memory addressing

There is a problem that occurs whenever we address data in main memories which are not word-addressable. Since most computers are byte- addressable today, and not word-addressable, this problem is quite important.
Integer data is expressed in binary notation and is comprised of a number of bits, each of which has a positional value, a power of 2. Since most modern computers use 32 bits to store one integer, one of these bits, usually visualized as the rightmost bit, is the place for 20, while at the opposite end of the number, the place for 231 holds a 1 or 0. We call the former the LSB, or Least Significant Bit, and the latter the MSB, or Most Significant Bit. Fig. 10.8.1 shows this:
[image: https://brahe.canisius.edu/~meyer/253/BOOK/ch10/GIFs/Fig10_8_1.gif]
Fig. 10.8.1: MSB and LSB in a 32-bit integer.
The decimal equivalent of 110100010000010011110111010100112 is 3,506,763,603.
The problem is that when the integer takes up 4 bytes, where is the MSB and the LSB? There are two obvious possibilities: The MSB is in the first of the four bytes, i.e. the byte with the lowest address. We call this big-endian. The opposite way, the little-endian storage method, puts the MSB in the last byte, the one with the highest address.


[bookmark: _GoBack]Fig. 10.8.2 shows the little-endian scheme while Fig. 10.8.3 illustrates the big-endian version, using the same binary number:
[bookmark: #Fig10_8_1][image: https://brahe.canisius.edu/~meyer/253/BOOK/ch10/GIFs/Fig10_8_2.gif]
Fig. 10.8.2: Little endian
[bookmark: #Fig10_8_2][image: https://brahe.canisius.edu/~meyer/253/BOOK/ch10/GIFs/Fig10_8_3.gif]
Fig. 10.8.3: Big endian
[bookmark: #Fig10_8_3]These terms come from the 18th century satirical novel "Gulliver's Travels" by Jonathan Swift where the Lilliputians are divided into two political parties based on whether they believe that an egg should be broken at its big end or its little end. Unfortunately for us today, the matter of which end comes first is not trivial or ridiculous but could make the difference whether two computers can share data or not.
Two things should be realized: this problem only arises when an integer, or any data object, cannot be completely contained within one physical word of the computer's memory. The CDC 6600 didn't have this problem because its words were 60 bits long, which is more than enough to store a huge binary integer! Second, there is no bit ordering within bytes themselves because they do not have separate addresses; the hardware "knows" which bit is which.
Big-endian computers include IBM mainframes and the Motorola chips, while VAXes and the Intel family of chips, which includes the 386, 486 and the Pentium, are little endian. There is no obvious preference of one over the other although people tend to find big-endian easier to understand because we write left to right and usually put larger numbers to the right of smaller numbers.
A good way to keep these two terms straight is to think that in big-endian computers, the big end of the number (the MSB) comes first, while in little endian computers, the little end (LSB) comes first, i.e. has the lowest address.
As far as operands and memory addressing goes, the difference between big endian and little endian doesn't come into play except when we examine the machine code or the actual bit patterns in memory and try to decipher what they mean. However, computers that communicate through a network or a shared file system need to be sure of how the other computer will interpret the bits. So knowledge of big-endian vrs. little-endian is crucial for many applications.
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