


Section 1.1
Logic Gates

The functional component which makes digital computers possible is the binary switch which has one of two positions or states, usually described as 1 and 0, on and off, or true and false. Millions upon millions of very small, very fast binary switches are needed to implement the complicated logic and memory of a modern digital computer.
At this point in history, digital computers utilize electronic components called transistors as their binary switches. These transistors allow or disallow electric current to flow through ultra-tiny wires. Transistors' states can be altered by another electric pulse in a very short amount of time. The detailed study of transistors is beyond the scope of this course, since it would require a great deal of study of the principles of electricity, magnetism and electronics.
But to understand a computer's functioning, we don't need to really understand the internals of transistors. Besides, they will probably be replaced by a different technology in ten years. Instead of studying transistors which are at too low a level, we will study gates which are the eternal logical foundations of computer hardware. These gates group together to form circuits, which implement the functionality of the computer.
A gate is a logical component that allows binary signals to be combined. Modern computers build gates out of transistors, but students at MIT put together an entire computer using tinker toys. Their basic unit was still the gate, and gates can be made from optical or biological components as well as tinker toys. Earlier computers, before the ENIAC in 1947, used relay switches which were electromagnets that flipped back and forth. The ENIAC and its successors for the next 15 years used vacuum tubes.
Even though all gates today are made of transistors, there are different kinds of transistors and different ways of building the same gates out of them. For example, CMOS (complementary metal oxide on silicon) is a type of transistor and a corresponding way of arranging transistors on a silicon chip. ECL (Emitter Coupled Logic) is another method. These are sometimes called "transistor technologies" or "logic families." In all of these cases, the AND gate, for example, performs the same function. However, some technologies such as ECL are much faster than others, while some technologies such as CMOS use very little power and are more appropriate for pocket calculators and portable computers.
A logic gate is a uni-directional device with one or more inputs going into it and one or more outputs coming out. These inputs and outputs are sometimes called wires or lines and have logical values corresponding to the states of a binary switch (1 and 0, on and off, true and false.)
[image: https://brahe.canisius.edu/~meyer/253/BOOK/ch1/GIFs/Fig1_1_1.gif]
Fig. 1.1.1: A generic gate
Three of the most common gates are AND, OR and NOT. AND and OR both have two inputs and one output, while NOT has one input and one output. Computer designers use abstract symbols for gates in order to ignore the kind of transistors that comprise it. Fig. 1.1.2 show the abstract symbols for these three gates and the truth tables that describe what they do.
[bookmark: #Fig1_1_1][image: https://brahe.canisius.edu/~meyer/253/BOOK/ch1/GIFs/Fig1_1_2.gif]
Fig. 1.1.2: Definitions of AND, OR, NOT
Occasionally some books will put arrows on the lines to indicate the direction of signal flow. This is not strictly necessary since the gates determine the flow of signal values. Here is an AND gate with arrows:
[bookmark: #Fig1_1_2][image: https://brahe.canisius.edu/~meyer/253/BOOK/ch1/GIFs/Fig1_1_3.gif]
Fig. 1.1.3: AND gate with directional arrows
[bookmark: #Fig1_1_3]We will not use this notation unless it is necessary for clarity.
The names AND, OR and NOT come from classical logic, and later we will show the connection between traditional logic and these circuits. The following rules help remember which truth table goes with which gate:
	AND
	Both of its inputs must be 1 in order for its output to be 1, i.e. both A and B must be 1.

	OR
	Either of its inputs must be 1 in order for its output to be 1, i.e. either A or B must be 1.

	NOT
	The output is not the same as the input. This is like the minus sign of mathematics, negation.


 


Section 1.2
Wires

What is really going on with these wires? Do they contain electricity? Why are there only two values? In order to fully understand how gates work at a physical level, we would need to study physics, electricity and electronics. Though we can treat gates as purely logical, abstract entities, it helps to know a bit more about what is going on, since it clarifies some mysteries.
First of all, these wires truly do have electricity going through them. Electricity is defined by several characteristics, notably current and voltage. Current is the measure of how many electrons are moving through a wire. More electrons, more current, the greater the shock! Voltage is a potential for the movement of electrons. Since electrons, which are negative, are attracted to protons, which are positive, they want to equalize their numbers and evenly mix the positive and negative charges. In order to get electrons to move, we need to unequalize things. Batteries and generators both do this.
Voltage and current can be imagined in the following way. Pick up a small rock and hold it about a yard off the ground. What happens when you open your fingers and release the rock? Does it stay there? Of course not! It is attracted to the ground by the Earth's gravity. As the rock travels towards the earth, it releases energy, kinetic energy or energy of movement. This can be harnessed to do useful things for humans, like generate electricity so we can use our portable computers and CD players. This is how Niagara Falls generates electricity, since the water is falling towards Earth, releasing vast amounts of kinetic energy.
If you do not open your fingers, the rock will not move, even though it wants to. This is called potential energy, and is like voltage. Current is similar to the actual movement of the rock. If you pick up a bigger rock, you can feel its stronger "desire" to travel towards the earth. It has more potential energy than a small stone. If it is released its fall will release more energy. Hopefully your foot will not be the unlucky recipient of this energy!
The ancient Greeks thought that a heavier object fell faster towards the earth, which is what Galileo disproved about 400 years ago by supposedly dropping different sized cannonballs from the Leaning Tower of Pisa. Whether or not Galileo really did this, it is true that a heavier object causes more damage than a smaller one when it falls, not because it travels faster but because it releases more energy when it hits.
Electrons can be thought of as mini-mini-mini-cannonballs. Voltage is the attraction they feel towards a positive charge, like a proton, and the greater the voltage the stronger the attraction. When they are actually released, their movement is electrical current, and it is this current which can cause damage. High voltage does not necessarily mean that great damage will be done, just as dropping a tiny rock from the height of 1000 feet wouldn't do much damage, but dropping a huge rock one inch could turn your foot into jelly.
A bit more terminology is useful. Voltage is measured in volts, named after Count Alessandro Volta (1745-1827). Current is measured in amps, short for amperes, named after French scientist Andre Marie Ampere (1775-1836).
Now that we understand voltage versus current, we need to figure out what is on those wires inside a computer chip. While it would be possible to make logic gates using current, some transistor technologies today have a small but constant current flowing all the time through the wires, and they vary the voltages to symbolize logic 1 or logic 0. In fact, logic 1 is usually +12 volts or higher, while logic 0 is +5 volts or lower. The range between 5 and 12 is reserved as a margin of error zone in case the voltage fluctuates making it hard to distinguish whether we are dealing with logic 1 or logic 0.
The fact that current is always flowing, and it is just the voltage that is changing to symbolize 1 and 0, means that every line always has some logic value on it all the time. For example, at time T0, here are voltages on three wires connected to an AND gate.
[image: https://brahe.canisius.edu/~meyer/253/BOOK/ch1/GIFs/Fig1_2_1.gif]
Fig. 1.2.1: AND gate at time T0
All three are within the range considered to be logic 1.
Suppose the A wire changes to +3 volts, which is within the logic 0 range. The value on the C wire doesn't change instantly because that would involve electrons traveling faster than the speed of light, an impossibility (except in the movies!) Fig. 1.2.2 shows the state of the gate now.
[bookmark: #Fig1_2_1][image: https://brahe.canisius.edu/~meyer/253/BOOK/ch1/GIFs/Fig1_2_2.gif]
Fig. 1.2.2: AND gate after bottom input has changed
However, the transistors within the gate get the message eventually and they alter the voltage on the C wire to +3 volts, too. We say that the value of the logic gate has propagated through the gate, and that the output now reflects the correct logical value. But for a very brief period of time, the value on the C wire was incorrect: it was logic 1 but one of the inputs was a logic 0. Then it moved through no-one's land of indeterminate logic values between +5 and +12 V. During this time, it would be a mistake to interpret the value of the output wire as having any logic value at all.
[bookmark: #Fig1_2_2][image: https://brahe.canisius.edu/~meyer/253/BOOK/ch1/GIFs/Fig1_2_3.gif]
Fig. 1.2.3: AND gate after logic value has propagated through the gate
[bookmark: #Fig1_2_3]Fig. 1.2.3 shows the state of things at time T0 + DAND, where DAND is the delay of an AND gate, or the amount of time it takes for changes to propagate through gates.
How long is DAND? What are the delays of OR and NOT gates? It depends upon how much the designer is willing to spend on the transistors. Some technologies, like CMOS, use very little current, thereby conserving batteries and power, but they are slow to change their logic values, taking as long as (yawn) 100 nanoseconds to switch. Other technologies like ECL are much faster, and make take only 7 nanoseconds. But they are expensive and hot. Only supercomputers use them because they consume a lot of electricity and generate great heat which requires fancy cooling equipment.
It is important to realize that there is always some value on C, although it may be in a state of fluctuation before DAND has elapsed. Voltages on wires do not change instantaneously but take a finite amount of time to move from one point on the real line continuum to another point. This implies that if we depend upon C's value as input to some other gate, we must wait a while before "using" C after changing the gate's inputs.
Many computer circuits are built of long chains of gates and each of these gates introduces a minuscule but measurable delay. They all add up which is why computers are as slow as they are. In order to speed up a computer, the chains can be made shorter, often very difficult, or the delay of the transistor can be decreased, often very costly.
 


Section 1.3
Logic Circuits

As alluded to above, the output of one gate is most often the input to another. Long chains and networks of gates are needed to do anything really useful or interesting. These are called circuits. In this course we will look at a number of circuits.
Here is a circuit that takes in two logic values on lines A and B and computes an output C.
[image: https://brahe.canisius.edu/~meyer/253/BOOK/ch1/GIFs/Fig1_3_1.gif]
Fig. 1.3.1: Exclusive OR circuit
[bookmark: #Fig1_3_1]Truth tables for circuits can be constructed by identifying the input wires, the output wires and the internal wires. For each combination of 1 and 0 on all the input wires, a row is created in the table and the value of the output wire is recorded. This is done by propagating all the input values through the circuit until the output wire has a new, stable value.
Let's make a truth table for the above circuit:
A     B   |   C
----------+------
0     0   |   0
0     1   |   1
1     0   |   1
1     1   |   0
Notice that the output column of this truth table is not like AND or OR because this circuit computes a different function.
 


Section 1.4
Calculating the delay of a circuit

We talked about the delay of a gate, which is the amount of time that must elapse between the time the input values change and the time when the output value is correct and stable. Entire circuits can be thought of as gates insofar as they have input wires and one or more output wires, and just as with individual gates, the output wires cannot be trusted until a certain amount of time has elapsed.
Obviously, the delay of a circuit is based on the delays of the individual gates. In this course, we will assume that all gates have the same delay, i.e. a NOT gate takes the same amount of time to switch as an AND gate, which is often not true in the real world.
Let's discuss circuit delays in the context of the following circuit:
[image: https://brahe.canisius.edu/~meyer/253/BOOK/ch1/GIFs/Fig1_4_1.gif]
Fig. 1.4.1: Calculation of a circuit's delay
[bookmark: #Fig1_4_1]If A, B and C are available at time T0, when will D's value be stable? Supposing that d is the gate delay, perhaps 100 nsec, then internal wire x1 will be stable at T0 + d. Then the NOT gate feeding into x2 takes d seconds to change its input, so wire x2 will not be stable until T0 + 2d. Wire x3 requires d seconds since it comes out of a NOT gate. But what about wire x4? One of its inputs is ready at T0 + d, but the other is not ready until T0 + 2d. The output wire x4 may change several times, but the circuit must wait for the longest possible time until all its inputs are stable before the output can be trusted. That is, if there are two inputs to a gate and they are ready at times T0 + a and T0 + b, take the maximum of a and b, add the gate delay to this, and that is when the output of this gate is stable. For wire x4, this will be T0 + 3d. Of course, since these wires always have some value on them, the gate will start to compute its new output as soon as any of its inputs change, but if one of them is still incorrect, the output cannot be correct until all the inputs are correct and stable. In Fig. 1.4.1 the last NOT gate introduces yet another delay, so the D wire cannot be trusted until T0 + 4d. This happens to be the length of the longest chain or path through this network of gates.
 
Section 1.5
Truth Tables

It is now time to discuss truth tables in greater detail. To make our truth tables easy to read, we will use the following conventions.
1. Every column of values represents one wire or line.
2. Wires have names, although internal wires are not included in the truth table.
3. Input wires appear on the left, followed by a vertical bar, followed by the output wire or wires on the right.
4. Each row in the truth table represents a state of the circuit after all the input values have propagated and the circuit is stable.
5. The number of rows is 2 to the power of the number of input wires, since all possible combinations of 1s and 0s on the input wires must be accounted for.
6. The order of the rows is what is called canonical order. Looking at the input wires' values as binary numbers, the rows go from 0 up to 111...1 in an orderly fashion. This is not logically necessary; it just makes it easier to look at the output columns and identify the function. (Binary numbers are discussed in Chapter 6.)
7. The number of outputs does not depend on the number of inputs, and there is no ordering to the output values.
Let's create a truth table for a circuit that has three inputs and two outputs:
[image: https://brahe.canisius.edu/~meyer/253/BOOK/ch1/GIFs/Fig1_5_1.gif]
Fig. 1.5.1: Three-input circuit
[bookmark: #Fig1_5_1]

First, since there are three inputs, there will be 8 rows since 23 = 8. Here is the skeleton of the truth table:
A     B     C  |  D     E
---------------+----------
0     0     0  |  ?     ?
               |
....???        |
               |
1     1     1  |  ?     ?
To come up with the canonical order, write down the numbers from 0 to 7 and convert them to binary (see Chapter 6), padding out the left end with 0s so that there are always three binary digits:
0     000
1     001
2     010
3     011
4     100
5     101
6     110
7     111
These digits become the value of the input wires A, B and C:
A     B     C  |  D     E
---------------+----------
0     0     0  |
0     0     1  |
0     1     0  |
0     1     1  |
1     0     0  |
1     0     1  |
1     1     0  |
1     1     1  |
Now to find out what the D and E values are, go through this table row by row, each time erasing all values from all the wires, both internal and output, and writing a new set of input values. The first time, write 0 on all three input wires, since that is the first row of the table. Then propagate the logical values completely through until no more changes can be done, finally recording what is on the two output wires, D and E.


Do this process eight times, giving the completed truth table below:
A     B     C  |  D     E
---------------+----------
0     0     0  |  1     0
0     0     1  |  1     0
0     1     0  |  1     0
0     1     1  |  1     0
1     0     0  |  1     0
1     0     1  |  0     1
1     1     0  |  1     0
1     1     1  |  0     1
 


Section 1.6
Notation Conventions

Drawings are abstract representations of reality and we have to be clear as to what is meant by our drawings. In Fig. 1.4.1, notice that there is a dark circle on the wire coming out of the C wire and attaching to the vertical wire. This is called a solder point and signifies that whatever logical value is on the C wire is identical to what is on the vertical wire. If C has a logic 0 then the vertical wire attached to it also has logic 0.
Solder (pronounced sodder) is a special alloy of metal that has a low melting temperature and is used to electrically connect two wires or other electronic components. A soldering iron is used to connect two wires electrically. The iron has a hot metal tip which swiftly melts soft metal that comes in a coil of special wire. The ends of the two wires are held together against the melting solder and once the solder cools and hardens, it forms a secure electrical connection.
Two wires that merely overlap, such as the horizontal wire and the vertical wire in the left hand part of Fig. 1.6.1 are assumed to remain electrically isolated. If these wires were bare metal, then they would short out and cause problems. But most wires have a rubber or plastic coating that insulates them from other wires so that the electrons running through them cannot go anywhere they are not supposed to.
[image: https://brahe.canisius.edu/~meyer/253/BOOK/ch1/GIFs/Fig1_6_1.gif]
Fig. 1.6.1: Notation for overlapping wires
The two wires in the right hand part of Fig. 1.6.1 are connected by a solder point, denoted by a black dot at the point of intersection. We will use these notation conventions throughout this web book.
Circuit designers sometimes draw a little half circle in one of the wires, as shown in Fig. 1.6.2, to show that the wires does not touch and have no electrical connection. We will not do this in this course.
[bookmark: #Fig1_6_1][image: https://brahe.canisius.edu/~meyer/253/BOOK/ch1/GIFs/Fig1_6_2.gif]
Fig. 1.6.2: Alternate notation to show no electrical connection between
wires that overlap but are not electrically connected
[bookmark: #Fig1_6_2]Inside a computer chip, wires are made of several different materials, including aluminum and silicon doped with conductive atoms. These wires exist in different layers, with insulating layers of non-conductive pure silicon dioxide (essentially glass) between the layers, thereby achieving the same effect as coating wires with rubber or plastic.
 


Section 1.7
More gates

While it is possible to build all computer circuits out of just three types of gates: AND, OR and NOT, other gates are often employed both notationally and in real computers. Here they are:
[image: https://brahe.canisius.edu/~meyer/253/BOOK/ch1/GIFs/Fig1_7_1.gif]
Fig. 1.7.1: Definitions of NAND and NOR
[bookmark: #Fig1_7_1][image: https://brahe.canisius.edu/~meyer/253/BOOK/ch1/GIFs/Fig1_7_2.gif]
Fig. 1.7.2: Definitions of XOR and XNOR
The NAND and NOR gates are simply AND and OR gates followed by NOT gates. That is, a single NAND gate could be drawn as
[bookmark: #Fig1_7_2][image: https://brahe.canisius.edu/~meyer/253/BOOK/ch1/GIFs/Fig1_7_3.gif]
Fig. 1.7.3: Circuit equivalent to NAND gate
Similarly, a NOR gate is an OR followed by a NOT. This makes it easy to remember their truth tables. For instance, to remember NAND's truth table, write down AND's truth table and "flip" all the bits (change all 1's to 0's and change all 0's to 1's).
Why are NAND and NOR gates even talked about and given special symbols if they aren't really needed? The reason is that in most transistor technologies it is easier to construct NAND and NOR gates than AND and OR gates. Consequently, circuits in real computers are built out of NAND and NOR gates although we still talk about AND and OR gates because most circuit designers first learned their logic using them.
Given only NAND, NOR and NOT gates, we can still build circuits with ANDs and ORs by substituted for each AND gate an equivalent circuit built from NAND and NOT, and each OR gate by another equivalent circuit built from NOR and NOT. A circuit that performs the OR function is shown below:
[bookmark: #Fig1_7_3][image: https://brahe.canisius.edu/~meyer/253/BOOK/ch1/GIFs/Fig1_7_4.gif]
Fig. 1.7.4: OR circuit made solely out of NOR and NOT
[bookmark: #Fig1_7_4]The XOR and XNOR gates are widely used for convenience's sake, although real circuits build them out of other gates. Fig. 1.3.1 (in section 3) is one such implementation of an XOR gate, using only AND, OR and NOT.
XOR stands for "Exclusive OR" while the regular OR is sometimes called "Inclusive OR." The exclusive version excludes the case when both inputs are 1, setting the output to 0, while the inclusive version includes this case. Many English speakers do not make a clear distinction between these two kinds of OR. For instance, if you are cooking at a picnic, you might tell your guests, "You can have a hamburger or a hot-dog," thinking they would choose just one but not both of these. This is the exclusive or, and some people add the word "either" to the sentence to signal this meaning. But sometimes you might mean the inclusive or, such as "I will buy this car if it is very fast or very cheap." The car might be both, in which case you would probably be even more delighted. What you mean is that the car needs to be at least one of these things, and if it is both then all the better.
Most people pronounce XOR as "EX-OR" while XNOR sounds suspiciously like "SNORE" especially if the initial k sound is pronounced quietly. We will tend to shy away from using XNOR in this class; no sleeping while holding a soldering iron, please!
These two gates perform a very useful function in computing the equality of the two inputs. When both inputs are identical, XNOR emits a 1 value, which could be taken to mean "true" or "yes." If the two inputs are not the same, XNOR generates a logic 0, which is often pronounced "false" or "no." XOR does just the opposite, generating logic 1 if and only if the two inputs are not the same. For this reason, XNOR is sometimes called EQUIV (equivalent) and XOR is called NEQUIV (not equivalent).
There are two competing symbols for XOR and XNOR. One version puts a double bar in the concave side, while the other uses the Boolean algebra symbol, which is a plus sign inside a circle. Either is okay to use.
 


Section 1.8
Connector Gates

There are two other electronic devices commonly found in computers that are quite useful even though they do not process information in quite the same way that the previous gates do. They are the non-inverting buffer (NIB) and the tri-state buffer, shown below.
[image: https://brahe.canisius.edu/~meyer/253/BOOK/ch1/GIFs/Fig1_8_1.gif]
Fig. 1.8.1: Definitions of NIB and tri-state buffer
The non-inverting buffer is really a NOT gate that negates itself, thereby giving the same logical output as the input. This seems like a waste of silicon space but electronic circuits obey the laws of physics. When electricity travels down a wire, even an extremely tiny wire embedded in a silicon chip, some of its energy is lost and the signal grows weaker or attenuated. Every so often the signal needs to be amplified (made louder or more intense) to a high enough energy level to maintain the distinction between logic 0 and logic 1, and a NIB does precisely this. NOT gates are also amplifiers, like NIBs, but they of course flip, or invert, the logic value of their input and outputs. Adding amplifier gates may not affect the logic of a circuit, but it adds more delay to the time of propagation.
A notational regularity is that any time the output is negated, a tiny circle appears. This is found with the NOT, NAND, NOR and XNOR gates. Thus, a NAND gate looks identical to an AND gate, except that there's an additional little circle at the head of its output wire. This little circle could be thought of as a shorthand for a full-fledged NOT gate.
Some authors extend this negation notation by allowing input wires to end in little circles. This is the lazy designer's way of avoiding the burdensome task of drawing a complete triangle. Here's an example and its equivalent:
[bookmark: #Fig1_8_1][image: https://brahe.canisius.edu/~meyer/253/BOOK/ch1/GIFs/Fig1_8_2.gif]
Fig. 1.8.2: Alternate notations for NOT gates
[bookmark: #Fig1_8_2]In this course we will only rarely use this notational convenience. On the chip, of course, the notation has no effect; all NOTs are implemented in the same way.
Finally, the tri-state buffer gate has X's in the output column. Earlier we said that all logic wires can have only one of two distinct values: 0 and 1. So what is X? X just means that the output could be 0 or 1. We don't know and we don't care.
The tri-state buffer has a most unusual function. It is like a solder point that can be made or broken at electronic speeds, depending upon the value on another wire. Thus, it is more like a non-inverting buffer, in that it copies its input to its output wire, but only if the other wire, coming in at an angle, is 1. If that wire, often called the control wire, is 0 then the input and output wires are electrically disconnected and cannot affect each other. In this state they maintain whatever values they had before. If it is 1, then the input and output are connected as if they were one wire.
Finally, let us mention yet another bit of terminology. Some writers will use phrases like "when line X goes high" or "if wire Z is low." What they mean is "when line X is set to logic value 1" and "if wire Z has logic value 0."
 


Section 1.9
Fan-in and Fan-out

One last aspect of logic gates needs to be discussed, and that is how many inputs and outputs a gate can have, if we generalize these logic functions to more than two inputs. The number of input wires to a logic gate is called the fan-in and the number of output wires is the fan-out. There are physical and logical constraints on these.
For all gates we have discussed, there is a single logic value output, which can be channeled to several other gates as their inputs using solder points. If an output is used to drive too many inputs, the power drain will cause the signal to be attenuated. However, NIBs and NOTs, which are amplifiers, can be used to boost a signal back up to its original strength, so real circuits use NIBs and NOTs in places that might not seem logically necessary, but are required by the nature of the electronics.
The NOT and NIB gates cannot have more than one input, while the tri-state buffer must have exactly two inputs. Many of the other logic gates, have obvious generalizations to more than two inputs. Following is a three-input AND along with its truth table:
[image: https://brahe.canisius.edu/~meyer/253/BOOK/ch1/GIFs/Fig1_9_1.gif]
Fig. 1.9.1: 3-input AND gate and its truth table


The truth table shows that the output of a 3-input AND gate is 1 only when all its inputs are 1, which is a logical generalization of the 2-input case. Similarly for OR, the output is 1 when any of its inputs is 1. Another way to find out the values of a multi-input AND or OR gate is to construct a cascaded logic circuit where all the components are 2-input gates:
[bookmark: #Fig1_9_1][image: https://brahe.canisius.edu/~meyer/253/BOOK/ch1/GIFs/Fig1_9_2.gif]
Fig. 1.9.2: Cascaded AND gate to replace a 3-input AND
Building a complete truth table would get the same answer as the above.
For XOR and XNOR, it is not as obvious what the generalization to 3 or more inputs would produce. Cascading reveals that XOR is really an odd-parity test function. Odd parity means that the total number of 1s in a sequence of bits is odd. Thus the bit string 0110100000 conforms to odd parity since there are 3 ones. The bits 0110100001 conforms to even parity, because there are 4 ones, and 4 is an even number.
The XOR gate takes in a number of bits and spits out 1 if all those bits conform to odd parity. Similarly the XNOR gate takes in a number of bits and spits out 1 if all those bits conform to even parity.
A    B  |  A@B   # of 1's    Input string conforms to odd parity?
--------+-------------------------------------------------------
0    0  |   0     0 (even)             no, hence emit 0
0    1  |   1     1 (odd)              yes, emit 1
1    0  |   1     1 (odd)              yes, emit 1
1    1  |   0     2 (even)             no, emit 0
(The symbol @ stands for exclusive or and means the same as the symbol [image: https://brahe.canisius.edu/~meyer/253/BOOK/circleplus.gif].)
As can be seen in the truth table for just two inputs to an XOR gate, if the bit string that is the two inputs conforms to odd parity, XOR emits 1.


An alternative way to view the multi-input XOR gate is to say that it computes the even parity bit given its inputs. That is, if there are an odd number of 1s in the input wires, XOR spits out 1 so that the three input wires and the one output wire all together have an even number of 1s. The following truth table is labeled to show this idea:
A    B  |  A@B    # of 1's     To make all 3 bits conform to even parity
--------+---------------------------------------------------------------
0    0  |   0      0 (even)                 emit 0
0    1  |   1      1 (odd)                  emit 1
1    0  |   1      1 (odd)                  emit 1
1    1  |   0      2 (even)                 emit 0
Similarly XNOR tests for even parity, and it also computes the odd parity bit. However, this is only true if there is an even number of bits in the bit string! If there is an odd number, it does not compute the right values due to the fact that XNOR is really XOR followed by a NOT gate. Similarly, NAND and NOR do not cascade. If the number of bits is even, however, then negating twice gets back to the positive side, so it works out when there are an even number of bits.
Parity is different than the equivalence and not-equivalence functions that 2-input XOR and XNOR gates compute. If there are three or more bits, at least two of the bits must be equivalent to each other, so the concept of equivalence does not extend past two inputs if there are only two distinct values, as is true in Boolean land.
[bookmark: #Fig1_9_2][image: https://brahe.canisius.edu/~meyer/253/BOOK/ch1/GIFs/Fig1_9_3.gif]
Fig. 1.9.3: Cascaded XOR and multi-input XOR
[bookmark: #Fig1_9_3]

Fig. 1.9.3 shows a 3-input XOR, and a logic circuit that uses two cascaded XORs. The truth table for the cascaded circuit, shown below, reveals that XOR (at least for 3 inputs) either tests for odd parity, or computes the even parity bit, which are equivalent.
A    B    C    |   B@C    A@(B@C)    #1's in 3 inputs
---------------+-------------------------------------
0    0    0    |    0        0             0 (even)
0    0    1    |    1        1             1 (odd)
0    1    0    |    1        1             1 (odd)
0    1    1    |    0        0             2 (even)
1    0    0    |    0        1             1 (odd)
1    0    1    |    1        0             2 (even)
1    1    0    |    1        0             2 (even)
1    1    1    |    0        1             3 (odd)
Cascading does not work for NAND or NOR because the negation reverses the inputs to the next level. To cascade NAND, do not put NOT gates on any inputs except the first level. Here are the rules for multi-input NAND and NOR.
	     
	The output of an n-input NAND is 1 unless all inputs are 1, in which case it is 0.



	     
	The output of an n-input NOR is 0 unless all inputs are 0, in which case it is 1.


Here are generic truth tables to illustrate these cases:
I1     I2     I3     I4     ...     In  |  NAND of all I's
----------------------------------------+--------------------
0      0      0      0     ...      0   |         1
0      0      0      0     ...      1   |         1
                           ...          |         1
1      1      1      1     ...      0   |         1
1      1      1      1     ...      1   |         0


I1     I2     I3     I4     ...     In  |  NOR of all I's
----------------------------------------+--------------------
0      0      0      0     ...      0   |         1
0      0      0      0     ...      1   |         0
                           ...          |         0
1      1      1      1     ...      0   |         0
1      1      1      1     ...      1   |         0
[bookmark: _GoBack]The physics of gate construction using transistors makes it easy to construct multiple input gates unless the fan-in is too great, in which case the problems of signal attenuation set in. Today's technology permits 8-input gates without any problems. We will use them wherever convenient.


22

image4.gif

image5.gif

image6.gif

image7.gif

image8.gif

image9.gif

image10.gif

image11.gif

image12.gif

image13.gif

image14.gif

image15.gif

image16.gif

image17.gif

image18.gif

image19.gif

image20.gif

image21.gif

image1.gif

image2.gif

image3.gif

