Section 5.1
Latches

The basic sequential circuit is a simple one that "remembers" its previous state. This type of memory circuit is called a latch because it latches or saves the last state assigned to it. These states are 1 or 0, so a latch can store one bit of information. Fig. 5.1.1 shows the SR latch:
[image: https://brahe.canisius.edu/~meyer/253/BOOK/ch5/GIFs/Fig5_1_1.gif]
Fig. 5.1.1: SR latch
There are 2 external inputs: S and R, which stand for Set and Reset. Set is often used by hardware designers as a shorthand for "assign the value 1" and reset means "assign the value 0." There are 2 external outputs: Q and Q'. These will always have the opposite value when the circuit is used correctly.
Sequential circuits utilize feedback, in which the output of a circuit comes back as an input. This can be seen in the SR latch where both the Q and Q' outputs are used as inputs to the two NOR gates.
When the power is on, there is always some value on these wires: logical 1 or 0 at any given time. When the power first comes on, random logical values appear on these wires. Let's assume the initial state of the latch is as given in Fig. 5.1.2. The truth table for the NOR gate is included for convenience.
[bookmark: #Fig5_1_1][image: https://brahe.canisius.edu/~meyer/253/BOOK/ch5/GIFs/Fig5_1_2.gif]
Fig. 5.1.2: initial state of SR latch
The configuration in Fig. 5.1.2 is called a stable state of the latch circuit because it can maintain these values indefinitely without change, unless the external inputs, either S or R, change.
By convention we say that a latch stores whatever value the Q wire currently has on it. Thus, the latch in Fig. 5.1.2 is storing the value 0.
If S changes to 1, the output of the "top" NOR gate changes to 0, which percolates down to the "bottom" NOR gate (the designations top and bottom are figurative since circuits are laying down on a 2-dimension surface). The bottom NOR gate then has two 0 inputs, so its output changes to a 1. This 1 travels back as the lower input to the top NOR gate, which does not change its output from a 0. This then is another stable state, and we say that the latch stores a 1, since Q=1:
[bookmark: #Fig5_1_2][image: https://brahe.canisius.edu/~meyer/253/BOOK/ch5/GIFs/Fig5_1_3.gif]
Fig. 5.1.3: S sets the latch to store a 1
Now watch what happens when S changes back to 0:
[bookmark: #Fig5_1_3][image: https://brahe.canisius.edu/~meyer/253/BOOK/ch5/GIFs/Fig5_1_4.gif]
Fig. 5.1.4: S changes back to 0; the latch retains its stored 1
Amazingly, the circuit changes not at all, and the outputs remain exactly as they were, Q=1, and Q'=0, and the latch continues to store its 1. We say that this latch remembers which of its two inputs were 1 most recently. If S were 1 most recently, then Q will be 1 and we say that it remembers or stores a 1. If R were 1 most recently, then Q will be 0 (and Q' will be 1) and we say the latch stores 0. The reader can verify that setting R to 1 and then back to 0 will cause the latch to flip its state to storing 0.
But what happens if both S and R are set to 1? Since we are playing with concepts on paper, not real wires and electrical sources, we can't get electrocuted, so let's try it!
[bookmark: #Fig5_1_4][image: https://brahe.canisius.edu/~meyer/253/BOOK/ch5/GIFs/Fig5_1_5.gif]
Fig. 5.1.5: Setting both S and R to 1
Both NOR gates output a 0, and we can't say that the latch is storing anything since Q and Q' are now both 0, and not their opposites. This is an indeterminate state because we can't determine what the true state is or should be.
As long as both S and R are held at 1, the latch retains this configuration. But watch what happens when S and R are set back to 0. Both NOR gates will output a 1, since NOR gates do this when both their inputs are 0:
[bookmark: #Fig5_1_5][image: https://brahe.canisius.edu/~meyer/253/BOOK/ch5/GIFs/Fig5_1_6.gif]
Fig. 5.1.6: S and R go back to 0, inducing oscillation within the latch
[bookmark: #Fig5_1_6]However, these 1 values loop back to the inputs of the other NOR gate causing a 0 to be output, and these 0's loop back, causing each NOR gate to have two 0 inputs, which soon causes a 1 to be output by the NOR. Thus, the latch flips back and forth rapidly between Q=Q'=0 and Q=Q'=1. This is an oscillation of the circuit and considered to be unstable.
Such an oscillation does not last forever due to the fact that no two NOR gates are totally identical. There are always minute differences, including differences in delay time, so that one NOR will eventually outrun the other and deliver its new output before the other. Whenever the two outputs Q and Q' are different for a sufficiently long time (approximately the delay time of a NOR gate), the circuit will settle down into one of its stable states and either Q=1, Q'=0 or Q=0, Q'=1. Notice that in such a case, it is nature that decides what value gets stored in the latch, not humans.
This sort of random choice between Q=0 and Q=1, this electronic flip of a coin, can be used for practical purposes, such as arbitrarily deciding which of two devices gets to go first, if they both want to go at the same time and signal so by setting their request wires to 1. Then the latch is said to be an arbiter because it performs arbitration between two parties; it arbitrarily picks one or the other.

Section 5.2
D latches and Clocked D latches

Though the SR latch's function as an arbiter is useful in some cases, it is dangerous when using such latches as memory circuits because slight timing problems could cause them to flip to an arbitrary value. Therefore, a variant of the SR latch, called the D latch, is often used:
[image: https://brahe.canisius.edu/~meyer/253/BOOK/ch5/GIFs/Fig5_2_1.gif]
Fig. 5.2.1: The D-latch
The D-latch has but one input, D (for data), and that single input is negated to produce input for the other NOR gate. Thus it is impossible for the S=R=1 problem to occur. However, everything comes at a cost, and the cost here is a slightly longer time to function, since that extra NOT gate introduces its own delay.
Another common variant of the D latch is the clocked D latch, which interposes an extra AND gate between each of the inputs to the NOR and the NOR gates:
[bookmark: #Fig5_2_1][image: https://brahe.canisius.edu/~meyer/253/BOOK/ch5/GIFs/Fig5_2_2.gif]
Fig. 5.2.2: The clocked D-latch
[bookmark: #Fig5_2_2]Now the latch can "read" the value of the data input wire only when the CK wire is 1. This wire may be attached to the chip's clock, a circuit that emits a series of pulses or transitions that cause the other components of the chip to function in lockstep. However, the CK input may be the output of another logic circuit, so the name ("clock") is merely figurative.
The CK input is another example of control input, rather than data input, in that the latch never stores the value on the CK wire, but only the value on the D wire. However, control inputs effect the timing of the circuits. In this case, that of the clocked D latch, the CK input tells when the data value is allowed to be stored into this one-bit memory.

Section 5.3
Symbols

Hardware designers often abbreviate their latch diagrams as "black boxes" to abstract away all the details of NOR gates and feedback and timing. Such a diagram is called a schematic. Following are the schematics for the SR latch, D latch and clocked D latch.
[image: https://brahe.canisius.edu/~meyer/253/BOOK/ch5/GIFs/Fig5_3_1.gif]
Fig. 5.3.1: Schematics for latches
The value that the latch stores is often written inside the box, and the value of the outgoing Q wire is then taken to be that of what is stored inside:
[bookmark: #Fig5_3_1][image: https://brahe.canisius.edu/~meyer/253/BOOK/ch5/GIFs/Fig5_3_2.gif]
Fig. 5.3.2: Clocked D-latch storing 1
[bookmark: #Fig5_3_2]

Section 5.4
Flip-Flops

Sometimes latches are inconvenient to use when forming complex memory circuits because the value they store can be changed whenever the input changes. In huge circuits, the exact timing of the wires becomes a monumental headache and occasionally different wires are slower to react than others, due to length of the wire, delay of gates and other reasons.
Latches are said to be level-triggered because changes in their stored values are triggered by changes in the values of their inputs. In particular these input values change from a 1 to a 0, or a 0 to a 1, and stay there for a while. It is only after the inputs have changed to a new value and stayed there that the latches record their new values.
Another type of memory cell, called a flip-flop, stores a single bit but is edge-triggered. It is called a flip-flop and its schematic is very much like a latch, only with a little arrow on the CK input wire:
[image: https://brahe.canisius.edu/~meyer/253/BOOK/ch5/GIFs/Fig5_4_1.gif]
Fig. 5.4.1: Clocked D flip-flop

Flip-flops are made of regular gates, just like latches, except they are more complicated. Fig. 5.4.2 shows a flip-flop. Notice that there are actually three little SR-latches, hooked together in a strange way so that there is mutual interaction.
[bookmark: #Fig5_4_1][image: https://brahe.canisius.edu/~meyer/253/BOOK/ch5/GIFs/Fig5_4_2.gif]
Fig. 5.4.2: Flip-flop (Source: [HAMACH])
Let's review a little bit of the physics of digital signals. We usually draw the signal as a function time, flipping instantaneously from logic 0 to logic 1 as in Fig. 5.4.3:
[bookmark: #Fig5_4_2][image: https://brahe.canisius.edu/~meyer/253/BOOK/ch5/GIFs/Fig5_4_3.gif]
Fig. 5.4.3: Digital waveforms
But this is not the way things work in the physical world. Voltages do not change in 0 time units, but rather they increase gently, then rapidly, and then level off again, as shown in Fig. 5.4.4:
[bookmark: #Fig5_4_3][image: https://brahe.canisius.edu/~meyer/253/BOOK/ch5/GIFs/Fig5_4_4.gif]
Fig. 5.4.4: Physical changes in voltage
Flip-flops are designed to change the value they store during the brief interval of time when the voltage is changing from one level to another. This time, called either the rising edge or the falling edge, depending upon the two plateaus on either side, is always much shorter than the level period in between, hence flip-flops are more reliable. Level-triggered devices, latches, have a much longer time during which to change their state and hence are more sensitive to fluctuations. Fig. 5.4.5 shows the two different edge times:
[bookmark: #Fig5_4_4][image: https://brahe.canisius.edu/~meyer/253/BOOK/ch5/GIFs/Fig5_4_5.gif]
Fig. 5.4.5: The rising edge and the falling edge;
only during these times can the contents of the flip-flop change
[bookmark: #Fig5_4_5]Any particular flip-flop is designed to change the value stored either on the falling edge or the rising edge, but not both. Hardware designers can select whichever type is most convenient. The flip-flop of Fig. 5.4.2 changes state on the falling edge.

Section 5.5
Registers

Groups of storage devices are used to store all kinds of values in a computer. Of course, every computer has a main memory, but there are other groupings of storage as well, even in the ALU. These groupings are often made of flip-flops and are called registers.
Registers usually store a binary number, hence the ordering of the flip-flops is important. We humans tend to think of binary numbers being stored in the same way we commonly write them on paper, namely left to right. Decimal numbers are stored in the same way. For example:
90356
represents ninety-thousand, three hundred fifty-six. This is a lot larger than 65309, which is what we get if we read from left to right.
The rightmost digit is called the least significant digit while the leftmost digit is the most significant digit. This terminology comes about because changing the value of the least significant digit changes the number the least, whereas changing the value of the most significant digit changes the value the most. For instance, changing the 6 to 7 in 90356 gets us a value that is only 1 greater than 90356, whereas changing 9 to 8 causes a decrease of 10,000.
Binary numbers are also written from left to right, so they have a least significant bit and a most significant bit. These are often abbreviated as LSB and MSB, respectively. The flip-flop that stores the LSB is called the least significant flip-flop. There is also a most significant flip-flop that stores the MSB.

In Fig. 5.5.1, a four-bit register is implemented using clocked D-latches. Notice that there are four separate inputs and four separate outputs, one for each bit. But there is only one clock input because all inputs are stored into the latches at the same time, when the CK wire is strobed.
[image: https://brahe.canisius.edu/~meyer/253/BOOK/ch5/GIFs/Fig5_5_1.gif]
Fig. 5.5.1: A four-bit register using clocked D-latches
Fig 5.5.2 is a schematic, block diagram of the same four bit register. The individual latches are no longer important and some details are left out.
[bookmark: #Fig5_5_1][image: https://brahe.canisius.edu/~meyer/253/BOOK/ch5/GIFs/Fig5_5_2.gif]
Fig. 5.5.2: The schematic of a four-bit register
[bookmark: #Fig5_5_2]The number of flip-flops in a register usually reflects the size of the adder or the size of the bus or the size of a main memory cell. Many computers have 32-bit registers, although there are special purpose registers that may be wider or narrower.
A group of registers is called the general purpose registers, which are used by assembly programmers to store intermediate values. It was common until recently to have 16 of these, each 32-bits wide. Since they exist in the main CPU, they are comprised of gates and are very fast. Modern RISC chips may have hundreds of registers, and some older computers have only a few. As of 2010, 64-bit registers are now the norm.
The general purpose registers each have a numerical address, from 0 to 15, if there are 16 of them. Assembly programs refer to them usually as R0, R1, R2, ... R15, although all sorts of other notations are common.

Section 5.6
Memory types

Registers are very fast, but also expensive since they are made up of lots of gates and take up valuable space (affectionately known as "chip real estate"). Computers always need another kind of memory, a much larger area, which is known as main memory.
The main memory of a modern digital computer is where most of the information is stored. Values are brought into the registers of the main processing chip only when they are needed and are stored only briefly.
Following is a list of the things stored in main memory and some of its uses:
1. Programs, made up of millions of machine instructions, are stored in main memory. The currently running program is always stored in main memory.
2. Data being operated upon by the running program, both input and output data, are stored in main memory.
3. Data coming from input devices or going to output devices usually makes a stop in main memory.
4. In a modern multiprogrammed operating system, programs that are not currently running, but which are ready to run, are stored in main memory.
In order to speed up computer systems, special memories called caches are often used as temporary holding bins between main memory and the processor chip. We will talk more about these later.
Memories are divided into two types:
	RAM
	Random Access Memory, any cell can be read or written

	ROM
	Read Only Memory, any cell can be read but not written

RAM memories are used to store running programs and the data they work on, while ROMs are used for special programs and unchanging data. When a computer first starts up, a small program called a bootstrap program is read from a ROM and executed. Since ROMs cannot be altered, this bootstrap program cannot be deleted, erased, or harmed in any way. Once the bootstrap starts, it turns on the other components such as the monitor, keyboard, mouse and disk drives, and the real operating system is read from a disk drive. ROMs are also used for many other things, such as character fonts for printers.
RAM memories may be made out of flip-flops, using gates, but this is often too expensive. Such RAM is called SRAM or static RAM because the values in the memory cells stay around (are static) as long as the power is on. Some cache memories used SRAM, but they are both expensive and use a lot of chip real estate.
The main RAM of the computer, the figure heard when a salesperson boasts that this new model has 16 Megabytes of RAM, for instance, is usually of DRAM, or dynamic RAM. This technology breaks a chip surface into millions of small squares which function as capacitors, each storing 1 bit of information.
A capacitor is an electrical component that can temporarily store a small electric charge. If two metal plates are positioned close together, but not touching, they form a capacitor. Fixing one end of a battery to each plate will charge the capacitor, i.e. cause a positive charge to flow into one plate and a corresponding negative charge into the other. If a wire ever connects the two plates, a brief surge of current will flow as the charges equalize. Capacitors are shown in Fig. 5.6.1:
[image: https://brahe.canisius.edu/~meyer/253/BOOK/ch5/GIFs/Fig5_6_1.gif]
Fig. 5.6.1: Capacitors a) shows two plates not touching form a capacitor;
b) end-on view of the plates; c) getting charged by a battery
d) being discharged by attaching a wire to both plates allowing current to flow briefly
[bookmark: #Fig5_6_1]Capacitors on silicon chips used as memories can be interpreted as storing a 1 if the capacitor is charged, 0 if uncharged. Alternately, the positioning of the charges (positive on top or negative on top) could be used to encode 1 or 0.
However, charges leak from capacitors so that eventually the two plates neutralize on their own. The smaller the plates the faster they leak. The tiny capacitors that are built on silicon chips are so small that they leak very rapidly, and hence all the 1s and 0s stored in a DRAM memory would evaporate very soon. Therefore, refresh circuitry is built into these memory chips causing each bit to be read every couple milliseconds and stored afresh so that its 1 or 0 is maintained. This adds complexity to the chip and slows it down.

Section 5.7
Organization of Memory

Both RAM and ROM memories are organized in the same way, as an ordered collection of words. A word is the smallest unit of memory that is read or written, and is usually a multiple of 2, such as 8 bits, 16 bits, 32 bits, or 64 bits. In the past, 36-bit memories and 60-bit memories were used on a few famous computers, such as the DEC PDP and the CDC Cyber. But as the 8-bit unit gained popularity, it came to be called a byte and a memory whose smallest addressable unit is the byte is called byte-addressable. Most computers today are byte-addressable, whereas the older computers were word-addressable. We shall use the term word in the following discussion in order to be totally generic about memory schemes.
Each word of a memory has a numerical address, starting at 0. The term random access refers to the fact that any word can be retrieved or changed in the same amount of time, regardless of its address. This is different from tape drives where the first word could be accessed immediately if the tape were rewound, but the last word would take a long time. Both RAM and ROM memories share this random access property, so their names are sort of misleading. We will refer to the central RAM of a computer as its main memory.
Memory words are accessed by specifying the address and an operation. The address is stored in a special register called the MAR, or Memory Address Register. Another register, the MBR, or Memory Buffer Register, is used to hold the contents of the memory cell. The operation is either read or write, and another control wire called memory active is used to tell the memory if it is to read or write.

Fig. 5.7.1. shows schematically how the MBR and MAR are connected to the memory words.
[image: https://brahe.canisius.edu/~meyer/253/BOOK/ch5/GIFs/Fig5_7_1.gif]
Fig. 5.7.1: Schematic of Memory
[bookmark: #Fig5_7_1]The MBR is always the same size as one cell of memory. If each cell is 8 bits wide, then the MBR is 8 bits.
The MAR bears a more subtle relationship to memory. Since it holds the address of the cells, its bit width is log2n where n is the number of cells in the memory. Thus, if there were 1024 cells, numbered from 0 to 1023, the MAR would need to be 10 bits wide. Thus, the MAR and MBR are often of different sizes, and bear no relationship to each other. The number of cells in a memory is almost always a power of 2 because of this addressing mechanism.

Section 5.8
Terminology

Let's review size terminology. Greek words are used for powers of 10, and the most commonly used quantities are:
kilo K roughly a thousand really 1,024
mega M roughly a million really 1,048,576
giga G roughly a billion really 1,073,741,824
tera T roughly a trillion really 1,099,511,628,776
The prefixes are attached to byte or word. If a computer's main memory is 1 megaword. then it has 1,048,576 individually addressable memory cells, each one word long, however long a word is in this computer. It might be 64 bits, in which case there are about 64 million bits.
On the other hand, the computer might have 8 megabytes, or 8 x 1,048,576 bytes, or 8,388,608 bytes. Beware of using these prefixes with monetary figures, though it is common nowadays. Make sure that if you sign a contract for 8 megadollars they pay you $8,388,608, not a mere 8 million!
Contractions are often used, such as 2Mbyte or 2M, where M stands for mega. Personal computers often have 8M main memories which would have been unthinkably huge just a decade ago when 64K for main memory was considered reasonable. The earliest IBM Personal Computer, unveiled in 1981, had a tiny 16K of main memory! Most memories are not in the terabyte range yet, but will probably be soon.

Section 5.9
Structure of RAM

Fig. 5.9.1 shows the heart of a RAM that has four words, each three bits wide, using clocked-D flip-flops. The decoder at the left edge takes the two outputs of the MAR register (not shown in this figure), and decodes them into four word-select wires. These are the main horizontal wires that run under each row of flip-flops and control which word of the RAM is affected, either for reading (output) or writing (input).
[image: https://brahe.canisius.edu/~meyer/253/BOOK/ch5/GIFs/Fig5_9_1.gif]
Fig. 5.9.1: RAM using flip-flops
[bookmark: #Fig5_9_1]The WR wire is one of the two control signal wires that is used to select the operation. If WR=0, then whatever is in the selected word is copied to the RAM output wires, labeled RO2, RO1, and RO0. If WR=1, then the CK (clock) input to all flip-flops in the selected word is set high, causing whatever is on the input wires (RI2, RI1, and RI0) to be copied into the flip-flop. Thus, WR=1 means "write into selected memory word" and WR=0 means "read from selected memory word."
AND gates are used to filter control and data signals through the memory. Suppose that the computer wants to read memory word 00. It puts 0 into both flip-flops of the MAR, which causes the 00 wire to go high, thereby selecting word 0, which is the top word. The output of the leftmost flip-flop of word 0 is ANDed with the word 0 select wire coming out of the decoder, causing the value of the long vertical wire to be identical to the value in the flip-flop, after the appropriate delay. The same is true of the other two flip-flops in word 0. At the same time, all other word select wires are 0, so the AND of the outputs of the nine other flip-flops and 0 is 0. Four wires feed into the OR gate that produces RO2. If the leftmost flip-flop of word 0 is 1, then one of these wires will be 1, and all the others will be 0, causing RO2 to be 1, reflecting the contents of that leftmost flip-flop. If that flip-flop contains 0, then that vertical wire will be 0, but so will all the others. Remember that 0 ORed with anything is that "anything," making 0 the identity element for the OR operation.
Likewise, the desired input to the memory is present on the three input wires RI2, RI1 and RI0, and these are all piped into all the flip-flops. But only one memory word can store these values because only one word-select wire coming out of the decoder will have 1 on it at a given time. And even if word 0 is the selected word, nothing will get changed in the flip-flops unless WR=1 and MA=1. Thus, the contents of memory are changed only if both WR=1 (write) and MA=1 (memory active). However, the contents of the selected word of memory are always present on the output wires (RO2, RO1, and RO0).

Section 5.10
Connecting RAM to the CPU

Every memory has three sets of wires connected to it:
	data wires
	the wires containing the actual data value read or written

	address wires
	the wires containing the address in binary of the desired word; this is the input to the address decoder, and causes one of the word-select wires to have 1 on it

	control wires
	the wires that select read or write and whether or not this memory is to respond to the read or write wire

Fig. 5.10.1 shows two sets of data wires: one for input (RI's) and one for output (RO's). In reality, these wire sets are both connected to the special MBR register. Let's create a new RAM diagram that reflects this:
[image: https://brahe.canisius.edu/~meyer/253/BOOK/ch5/GIFs/Fig5_10_1.gif]
Fig. 5.10.1: RAM with MBR
The output of the MBR is the input to the RAM's flip-flops, i.e. the RI wires of Fig. 5.9.1. The input to the MBR is a combination of the output of the flip-flops (the RO wires of Fig. 5.9.1) and data wires that come from the rest of the computer. These wires are attached to other registers in the CPU.
Actually, the MBR cannot really have two sets of inputs since it is made up of as many flip-flops as there are flip-flops in each memory word. Since each flip-flop has only one data input, extra AND gates are used to filter out which set of inputs the MBR should respond to. OR gates combine these filtered inputs, as shown in Fig. 5.10.2.
[bookmark: #Fig5_10_1][image: https://brahe.canisius.edu/~meyer/253/BOOK/ch5/GIFs/Fig5_10_2.gif]
Fig. 5.10.2: One-bit slice of the MBR and control circuitry
[bookmark: #Fig5_10_2]

Section 5.11
Operation of RAM

The MBR is a holding station for values coming out of or going into memory. All data going into or out of memory passes through the MBR. Thus, the CPU must use signals to control the timing and direction of this data flow.
Data going into memory first comes from one of the CPU's registers (such as the A register) and goes into the MBR. Then the CPU initiates a memory write.
Data coming out of memory is placed into the MBR after a memory read completes. Then the CPU copies the value of the MBR into one of its registers, such as the A register.
Thus, there are four kinds of data movement, summarized in the table below along with the signals that control them:
	· Direction: CPU -> MBR
Signals: MBRLD=1, WR=0, MA=0
 prepare to write into memory
· Direction: MBR -> CPU
Signals: MBRLD=0, WR=0, MA=0
 copy a recently read value into a CPU register
· Direction: Memory -> MBR
Signals: MBRLD=1, WR=0, MA=1
 read operation, copy value from memory into MBR
· Direction: MBR -> Memory
Signals: MBRLD=0, WR=1, MA=1
 write operation, copy value from MBR into memory

When the computer wants to write into memory, it first stores the value into the MBR, after copying it from some other register. Then both MA and WR are set to 1. When the values are stable, MBRLD is strobed (set temporarily to 1) and the new value is latched into the MBR. MA and WR are kept at 1 after MBRLD is turned off, thereby allowing the flip-flops in the selected word of RAM to change their value to be the same as the output of the MBR. Remember this takes some time.
To read a value from memory, WR is kept at 0 and MA is set to 1. MBRLD is strobed to copy the values into the MBR flip-flops. From there, the data will be copied into other registers to be used in arithmetic operations, or possibly stored into another memory location (in which case MBR need not be changed, only the MAR.)
The MBR is a bidirectional way-station for data. It is used both for reading and writing. The MAR, on the other hand, is only used in one direction. The computer puts an address into it and the memory decoder reads that address out of it, never going in the other direction.

Section 5.12
Memory cycles

All gates introduce a small but measurable time delay, and since flip-flops are made of gates, it takes a small but finite amount of time to change their value. The same is true of the tiny capacitors used in DRAM chips, where the delay is around 70 nanoseconds. The operation of the memory must be coordinated with the rest of the computer so the control signals (MA, WR and MBRLD) have to be asserted at the proper times.
In order to smoothly interconnect the memory and the rest of the computer, memory operations take place during what are called memory cycles. A memory cycle is the amount of time from the beginning of a memory operation, whether a read or a write, until the end of that operation and the beginning of the next.
Fig. 5.12.1 shows a time-line to illustrate how time is broken into chunks.
[image: https://brahe.canisius.edu/~meyer/253/BOOK/ch5/GIFs/Fig5_12_1.gif]
Fig. 5.12.1: Memory cycles
[bookmark: #Fig5_12_1]The notation needs a little clarification. When only one wire is shown, such as the WR wire, it is either 0 or 1. A lower line represents 0 and the higher level represents 1, with a short diagonal line between any transitions to represent the fact that the values of wires do not change instantaneously. When a group of wires is shown, such as the RI wires (the three RAM Input wires of Fig. 5.10.1), either a single line is shown, or a "fat" line, with a half-diamond to represent the transitional phase. When the line is "fat," the group of wires has values that we care about, although some may be 0 and some may be 1. When the line is thin or single, the group of wires either has old or invalid data on it, or does not contain values that we care about.
Let's analyze the two memory cycles shown in Fig. 5.12.1. The first is a write operation and the second is a read operation, although it would be possible to have two or more writes in a row, or two or more reads in a row.
For a write, the computer must first store some new value into the MBR. This is shown by strobing MBRLD, after which time MBR's output lines have valid data on them. WR must be 1 before the strobe, as can be seen from Fig. 21, where WR is ANDed with the wire from the system registers before being input to the MBR's flip-flops. A short while after the MBR gets a new input value, its output wires, the RI (RAM Input) wires, will have the right values.
At the same time that the MBR is being loaded with the value to be written to memory, the address can be stored into the MAR telling the memory which word to work with. After a delay necessitated by the decoder circuit, the appropriate word-select wire will go high, and all others will go low. Only one word-select wire is shown, although there are many of them (4 for the RAM in Fig. 5.9.1). But only one will have the value 1.
Finally, the RAM is ready to store the new value into its flip-flops, so MA is set to 1 to activate memory and the store takes place. After another time delay (shown as memory delay in Fig. 21), at time T3, the output of the RO wires will match what is now stored in the flip-flops, and the store or write operation is complete.
To read a word from memory, the address must be put onto the MAR as before, and the decode delay must be allowed for. By time T4, the appropriate word-select wire is stable at 1 and MA is asserted, causing the output of the appropriate flip-flop to be copied onto the RO wires. This is called the fetch delay. Notice that WR=0 during this time to indicate this is a read operation. Finally, the new value must be stored into the MBR, so MBRLD is strobed by the computer, after which time MBR has the right value. This can be copied by the system into some other register.
The delays are not shown to scale, although in a real memory, the amount of time to copy data into and out of the MBR is usually shorter than the time to copy into or out of RAM, especially if the memory uses tiny capacitors (i.e. it is a DRAM). The longest delays must be taken into account so that the time for one memory cycle is enough for any operation. Making the memory cycle a uniform amount of time, even if a read operation takes less time than a write operation, makes the design of the computer much easier. Designers who want to eke out the last nanosecond of performance from a system may alter this arrangement and use more clever schemes involving non-uniform memory operations, but we will not delve into those advanced topics in this course.

[bookmark: _GoBack]Section 5.13
Structure and Operation of ROM

ROM is much simpler than RAM since its contents never need to be altered. It has an MAR and an MBR, although its MBR is always wired up to be the output of the ROM, never its input. In fact, a ROM is a combinational circuit. Input the address of the word that needs to be read, and after a delay the output is contents of that word.
Fig. 5.13.1 shows a 4-word 3-bit ROM. The MAR is 2-bits, so there are four word-select wires coming out of the decoder, just as in the RAM. But the output wires are hooked directly to these word select wires, instead of coming from flip-flops. Wherever there is a black dot, think of this as a solder point that connects the wires, although ROM as actually manufactured using small fuses just like PLAs.
[image: https://brahe.canisius.edu/~meyer/253/BOOK/ch5/GIFs/Fig5_13_1.gif]
Fig. 5.13.1: 4-word 3-bit ROM
[bookmark: #Fig5_13_1]Here are the values that are stored in this ROM by the pattern of solder points:
binary address decimal address value stored
-------------- --------------- ------------
 00 0 101
 01 1 110
 10 2 001
 11 3 111
Notice that the word select wire for 00 is soldered to wires R2 and R0, causing 1 to be placed on those wires if 00 is the address. All other word select wires would be 0, so the input to the two OR gates would be one 1 and all other 0s. The OR gate inputs for R1 would be all 0s so the R1 output would be 0; thus the value 101 appears on the output wires.
ROMs are manufactured as PLAs which are programmed by the factory, which burns in the desired pattern of 1s and 0s. Other types of ROMs are called programmable because the user can burn their own pattern of values into ROMs "in the field" in order to make custom ROMs. These are dubbed PROMs (Programmable ROMs). Yet another type of ROM is the EPROM, or Erasable Programmable ROM which can be "cleared" by exposing the chip to strong ultraviolet light and then reprogrammed. The process of storing a set of values in a ROM has come to be called programming a ROM although it bears no resemblance to programming except for the fact that many ROMs do store programs.

29

image4.gif

image5.gif

image6.gif

image7.gif

image8.gif

image9.gif

image10.gif

image11.gif

image12.gif

image13.gif

image14.gif

image15.gif

image16.gif

image17.gif
Do

&K—

N

image18.gif

image19.gif
memary operationt

memaryactve (M4)

image20.gif

image21.gif

image22.gif

image23.gif
WRITE OPERATION READ OPERATION

A 4+—L T N
! T | L
o O ; 0
! ! —_—
L | ey ||
w7 ! L [
T T -
v | /T 1 ! —
oy s I , Lo
deop e decote ey
: ! | [
wR——1— !
] |
o7 E—— T
[
i wemoryaany |
e G —
, L ! L
MBRLD —! b
L =
be———one memary cycle——|

image24.gif

image1.gif

image2.gif

image3.gif

